

PostgreSQL 9.0
High Performance

Accelerate your PostgreSQL system and avoid the
common pitfalls that can slow it down

Gregory Smith

 BIRMINGHAM - MUMBAI

PostgreSQL 9.0 High Performance

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2010

Production Reference: 1141010

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849510-30-1

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

Credits

Author
Gregory Smith

Reviewers
Kevin Grittner

Jim Mlodgenski

Scott Marlowe

Acquisition Editor
Sarah Cullington

Development Editors
Hyacintha D'Souza

Mayuri Kokate

Technical Editors
Sakina Kaydawala

Alfred John

Indexer
Hemangini Bari

Tejal Daruwale

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Lata Basantani

Project Coordinator
Srimoyee Ghoshal

Proofreader
Aaron Nash

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Gregory Smith is a Principal Consultant for international database professional
services firm 2ndQuadrant, and founder of the company's first United States office.

Writing about PostgreSQL represents his second foray into teaching database
performance tuning. Greg wrote a small, free e-book titled Progress Performance FAQ
in 1995, covering the basics of how to make the Progress 4GL and its associated
database run faster. In 2001, he converted exclusively to using PostgreSQL 7.0 for
projects, and has been watching the complexity of problems the database is capable
of solving increase with every release since.

Greg has contributed feature additions to every PostgreSQL version since 8.3. He's
also the creator of a growing set of add-on tools for the database, currently including
pgtune, pgbench-tools, peg, and 2warm.

I was able to focus on the material in this book well enough to do
it justice only through the support provided by Simon Riggs and
the rest of the 2ndQuadrant staff around the world. The exposure
to interesting problems to solve, and resources to solve them, has
made working with 2ndQuadrant staff and clients a fertile source for
PostgreSQL performance ideas over the last year.

The writing schedule pace needed to deliver a current book covering
a major new database release just after it ships is grueling. I'd never
have made it through so many weeks of working all seven days
without the support of my family: Judy, Jerry, and Amanda.

Finally, the material in this book only exists because of the hundreds
of contributors to the PostgreSQL project. And without the free
sharing of ideas on mailing lists like pgsql-performance and pgsql-
hackers the last few years, I'd never have been able to collect up
such a wide survey of common performance issues. Whether it was
having my own questions answered, or carefully considering how to
answer someone else's, the interaction on those mailing lists has been
vital to forming the ideas of this book.

About the Reviewers

Kevin Grittner has worked in the computer industry since 1972. While he has
filled many roles during decades of consulting, working with databases has been
a major focus—particularly in terms of optimization and providing frameworks
for efficient application development against a database. In the mid 80s, he was
the architect and primary author of the PROBER Database and Development
Environment, which was never released commercially but enjoyed widespread
use in certain vertical markets, such as fire departments, hospitals, and probation
and parole agencies.

Jim Mlodgenski is Chief Architect at EnterpriseDB. He is one of EnterpriseDB's
first employees, having joined the company in May, 2005. Over several years, Jim has
been responsible for key activities such as sales engineering, professional services,
strategic technology solutions delivery, and customer education.

Prior to joining EnterpriseDB, Jim was a partner and architect at Fusion Technologies,
a technology services company. For nearly a decade, Jim developed early designs
and concepts for Fusion's consulting projects and specialized in Oracle application
development, web development, and open source information architectures.

I want to thank my wonderful wife Stacie and awesome son Paul for
supporting me.

Scott Marlowe has over 25 years of experience in software development, system
administration, and database development. His first program was a gradebook
program for the Air Force and he's been hooked ever since.Scott works for
Edline/Schoolfusion as a systems administrator and DBA.

I'd like to thank my two sons for being the greatest kids in the world,
and my best friend Darren for all the expertise and knowledge we've
shared in the last decade or so.

Table of Contents
Preface 1
Chapter 1: PostgreSQL Versions 7

Performance of historical PostgreSQL releases 8
Choosing a version to deploy 9
Upgrading to a newer major version 9

Upgrades to PostgreSQL 8.3+ from earlier ones 10
Minor version upgrades 11

PostgreSQL or another database? 12
PostgreSQL tools 12

PostgreSQL contrib 13
Finding contrib modules on your system 13
Installing a contrib module from source 14
Using a contrib module 15

pgFoundry 15
Additional PostgreSQL-related software 16

PostgreSQL application scaling lifecycle 16
Performance tuning as a practice 17
Summary 19

Chapter 2: Database Hardware 21
Balancing hardware spending 21

CPUs 21
Memory 22
Disks 23

RAID 24
Drive error handling 26
Hard drive reliability studies 27
Drive firmware and RAID 27
SSDs 28

Table of Contents

[ii]

Disk controllers 29
Hardware and Software RAID 29
Recommended disk controllers 30
Attached storage—SAN and NAS 32

Reliable controller and disk setup 34
Write-back caches 34

Sources of write-back caching 35
Disk controller monitoring 36
Disabling drive write caches 37

Performance impact of write-through caching 38
Summary 39

Chapter 3: Database Hardware Benchmarking 41
CPU and memory benchmarking 41

memtest86+ 42
STREAM memory testing 42

STREAM and Intel vs. AMD 43
CPU benchmarking 44
Sources of slow memory and processors 45

Physical disk performance 47
Random access and I/Os Per Second 47
Sequential access and ZCAV 48

Short stroking 49
Commit rate 49

PostgreSQL test_fsync 50
INSERT rate 50
Windows commit rate 50

Disk benchmarking tools 50
hdtune 51

Short stroking tests 52
IOPS 53
Unpredictable performance and Windows 54

dd 55
bonnie++ 56

bonnie++ 2.0 57
bonnie++ ZCAV 58

sysbench 60
Seek rate 61
fsync commit rate 61

Complicated disk benchmarks 62
Sample disk results 63

Disk performance expectations 65
Sources of slow disk and array performance 65

Summary 67

Table of Contents

[iii]

Chapter 4: Disk Setup 69
Maximum filesystem sizes 69
Filesystem crash recovery 70

Journaling filesystems 71
Linux filesystems 72

ext2 72
ext3 73
ext4 75
XFS 75
Other Linux filesystems 77
Write barriers 77

Drive support for barriers 78
Filesystem support for barriers 79

General Linux filesystem tuning 79
Read-ahead 79
File access times 80
Read caching and swapping 81
Write cache sizing 81
I/O scheduler elevator 82

Solaris and FreeBSD filesystems 84
Solaris UFS 85
FreeBSD UFS2 86
ZFS 87

Windows filesystems 89
FAT32 89
NTFS 89

Adjusting mounting behaviour 90
Disk layout for PostgreSQL 91

Symbolic links 91
Tablespaces 91
Database directory tree 92

Temporary files 93
Disk arrays, RAID, and disk layout 94

Disk layout guidelines 96
Summary 97

Chapter 5: Memory for Database Caching 99
Memory units in the postgresql.conf 99
Increasing UNIX shared memory parameters for larger buffer sizes 100

Kernel semaphores 102
Estimating shared memory allocation 102

Inspecting the database cache 104
Installing pg_buffercache into a database 105
Database disk layout 106

Table of Contents

[iv]

Creating a new block in a database 108
Writing dirty blocks to disk 109

Crash recovery and the buffer cache 110
Checkpoint processing basics 110
Write-ahead log and recovery processing 110
Checkpoint timing 111

Checkpoint spikes 112
Spread checkpoints 112

Database block lifecycle 113
Dirty block write paths 114

Database buffer cache versus operating system cache 114
Doubly cached data 115

Inspecting the OS cache 116
Checkpoint overhead 116
Starting size guidelines 116

Platform, version, and workload limitations 117
Analyzing buffer cache contents 118

Inspection of the buffer cache queries 118
Top relations in the cache 119
Summary by usage count 120
Buffer contents summary, with percentages 120
Buffer usage count distribution 122

Using buffer cache inspection for sizing feedback 123
Summary 124

Chapter 6: Server Configuration Tuning 125
Interacting with the live configuration 125

Defaults and reset values 126
Allowed change context 126
Reloading the configuration file 127

Commented out settings 128
Server-wide settings 129

Database connections 129
listen_addresses 129
max_connections 130

Shared memory 131
shared_buffers 131
Free space map (FSM) settings 131

Logging 132
log_line_prefix 132
log_statement 133
log_min_duration_statement 133

Vacuuming and statistics 134
autovacuum 134
Enabling autovacuum on older versions 135

Table of Contents

[v]

maintainance_work_mem 135
default_statistics_target 136

Checkpoints 136
checkpoint_segments 137
checkpoint_timeout 138
checkpoint_completion_target 138

WAL settings 138
wal_buffers 138
wal_sync_method 139

PITR and WAL Replication 140
Per-client settings 140

effective_cache_size 141
synchronous_commit 141
work_mem 142
random_page_cost 143
constraint_exclusion 143

Tunables to avoid 143
fsync 143
full_page_writes 144
commit_delay and commit_siblings 144
max_prepared_transactions 144
Query enable parameters 145

New server tuning 145
Dedicated server guidelines 145
Shared server guidelines 146
pgtune 147
Summary 147

Chapter 7: Routine Maintenance 149
Transaction visibility with multiversion concurrency control 149

Visibility computation internals 149
Updates 150
Row lock conflicts 152

Serialization 154
Deletions 154
Advantages of MVCC 155
Disadvantages of MVCC 156
Transaction ID wraparound 156

Vacuum 158
Vacuum Implementation 158

Regular vacuum 158
Returning free disk space 159
Full vacuum 159
HOT 160

Cost-based vacuuming 160

Table of Contents

[vi]

autovacuum 162
autovacuum logging 163
autovacuum monitoring 163
autovacuum triggering 164
Per-table adjustments 165

Common vacuum and autovacuum problems 167
autovacuum is running even though it was turned off 167
autovacuum is constantly running 167
Out of memory errors 168
Not keeping up on a busy server 168
autovacuum is too disruptive 168
Long running transactions 169
Free Space Map exhaustion 169
Recovering from major problems 170

Autoanalyze 171
Index bloat 171

Measuring index bloat 172
Detailed data and index page monitoring 174
Monitoring query logs 175

Basic PostgreSQL log setup 175
Log collection 176
log_line_prefix 176
Multi-line queries 177
Using syslog for log messages 177
CSV logging 178

Logging difficult queries 179
auto_explain 180

Log file analysis 181
Normalized query fingerprints 181
pg_stat_statements 182
pgFouine 183
PQA 186
EPQA 186
pgsi 186
mk-query-digest 186

Summary 187
Chapter 8: Database Benchmarking 189

pgbench default tests 189
Table definition 189
Scale detection 190
Query script definition 191
Configuring the database server for pgbench 193

Sample server configuration 193
Running pgbench manually 194
Graphing results with pgbench-tools 195

Table of Contents

[vii]

Configuring pgbench-tools 196
Customizing for 8.3 197

Sample pgbench test results 197
SELECT-only test 197
TPC-B-like test 198
Latency analysis 200

Sources for bad results and variation 203
Developer PostgreSQL builds 204
Worker threads and pgbench program limitations 204

pgbench custom tests 205
Insert speed test 206

Transaction Processing Performance Council benchmarks 207
Summary 208

Chapter 9: Database Indexing 209
Indexing example walkthrough 210

Measuring query disk and index block statistics 210
Running the example 211
Sample data setup 211
Simple index lookups 213
Full table scans 214
Index creation 215
Lookup with an inefficient index 216
Combining indexes 217
Switching from indexed to sequential scans 218

Planning for plan changes 219
Clustering against an index 219
Explain with buffer counts 221

Index creation and maintenance 222
Unique indexes 222
Concurrent index creation 223
Clustering an index 224

Fill factor 224
Reindexing 225

Index types 225
B-tree 225

Text operator classes 226
Hash 226
GIN 227
GiST 227

Advanced index use 228
Multicolumn indexes 228
Indexes for sorting 228

Table of Contents

[viii]

Partial indexes 229
Expression-based indexes 229
Indexing for full-text search 230

Summary 231
Chapter 10: Query Optimization 233

Sample data sets 233
Pagila 234
Dell Store 2 234

EXPLAIN basics 236
Timing overhead 236
Hot and cold cache behavior 237

Clearing the cache 237
Query plan node structure 239

Basic cost computation 240
Estimated costs and real world costs 242

Explain analysis tools 242
Visual explain 242
Verbose output 243
Machine readable explain output 243
Plan analysis tools 244

Assembling row sets 245
Tuple id 245

Object id 246
Sequential scan 246
Index scan 247
Bitmap heap and index scans 247

Processing nodes 249
Sort 249
Limit 250

Offsets 251
Aggregate 252
HashAggregate 252
Unique 253

WindowAgg 254
Result 254
Append 255
Group 257
Subquery Scan and Subplan 258

Subquery conversion and IN lists 258
Set operations 259
Materialize 260
CTE Scan 261

Table of Contents

[ix]

Joins 262
Nested loop 262

Nested loop with inner Index Scan 263
Merge Join 264

Nested loop and Merge Join materialization 265
Hash Joins 266

Hash semi and anti joins 267
Join ordering 268
Forcing join order 268
Join removal 269
Genetic query optimizer 270

Statistics 271
Viewing and estimating with statistics 271
Statistics targets 275

Adjusting a column target 275
Distinct values 276

Difficult areas to estimate 276
Other query planning parameters 277

effective_cache_size 277
work_mem 278
constraint_exclusion 279
cursor_tuple_fraction 279

Executing other statement types 280
Improving queries 280

Optimizing for fully cached data sets 281
Testing for query equivalence 281
Disabling optimizer features 282
Working around optimizer bugs 287
Avoiding plan restructuring with OFFSET 287
External trouble spots 290

SQL Limitations 291
Numbering rows in SQL 291
Using Window functions for numbering 292
Using Window functions for cumulatives 293

Summary 294
Chapter 11: Database Activity and Statistics 297

Statistics views 297
Cumulative and live views 299
Table statistics 300

Table I/O 302
Index statistics 303

Index I/O 305

Table of Contents

[x]

Database wide totals 305
Connections and activity 306
Locks 307

Virtual transactions 307
Decoding lock information 309
Transaction lock waits 312
Table lock waits 313
Logging lock information 314

Deadlocks 314
Disk usage 315
Buffer, background writer, and checkpoint activity 318

Saving pg_stat_bgwriter snapshots 319
Tuning using background writer statistics 322

Summary 324
Chapter 12: Monitoring and Trending 325

UNIX monitoring tools 325
Sample setup 325
vmstat 326
iostat 329

iotop for Linux 331
Examples of good performance 332
Overloaded system samples 335

top 338
Solaris top replacements 340
htop for Linux 340

sysstat and sar 340
Enabling sysstat and its optional features 342
Graphing with kSar 343

Windows monitoring tools 343
Task Manager 343

Sysinternals tools 344
Windows System Monitor 344

Saving Windows System Monitor data 345
Trending software 346

Types of monitoring and trending software 346
Storing historical trend data 347

Nagios 347
Nagios and PostgreSQL 348
Nagios and Windows 349

Cacti 349
Cacti and PostgreSQL 350
Cacti and Windows 350

Munin 350

Table of Contents

[xi]

Other trending packages 350
pgstatspack 351
Zenoss 351
Hyperic HQ 352
Reconnoiter 352
Staplr 353
SNMP tools 353

Summary 353
Chapter 13: Pooling and Caching 355

Connection pooling 355
Pooling connection counts 356
pgpool-II 357

pgpool-II load balancing for replication scaling 357
pgBouncer 358

Application server pooling 359
Database caching 359

memcached 360
pgmemcache 360

Summary 361
Chapter 14: Scaling with Replication 363

Hot Standby 363
Terminology 364
Setting up WAL shipping 365
Streaming Replication 366
Tuning Hot Standby 366

Replication queue managers 367
Slony 368
Londiste 369
Read scaling with replication queue software 369

Special application requirements 369
Bucardo 370
pgpool-II 370

Other interesting replication projects 371
Summary 372

Chapter 15: Partitioning Data 375
Table range partitioning 375

Determining a key field to partition over 376
Sizing the partitions 377

List partitioning 377
Creating the partitions 378
Redirecting INSERT statements to the partitions 379

Dynamic trigger functions 380

Table of Contents

[xii]

Partition rules 381
Empty partition query plans 382
Date change update trigger 382
Live migration of a partitioned table 383
Partitioned queries 386
Creating new partitions 389

Scheduled creation 389
Dynamic creation 389

Partitioning advantages 390
Common partitioning mistakes 390

Horizontal partitioning with PL/Proxy 391
Hash generation 392
Scaling with PL/Proxy 393

Sharding 394
Scaling with GridSQL 395

Summary 396
Chapter 16: Avoiding Common Problems 399

Bulk loading 399
Loading methods 399

External loading programs 400
Tuning for bulk loads 401
Skipping WAL acceleration 402
Recreating indexes and adding constraints 402
Parallel restore 403
Post load cleanup 403

Common performance issues 404
Counting rows 404
Unexplained writes 405
Slow function and prepared statement execution 406
PL/pgSQL benchmarking 407
High foreign key overhead 408
Trigger memory use 409
Heavy statistics collector overhead 409

Targeted statistics resets 410
Materialized views 410

Profiling the database 411
gprof 411
OProfile 411
Visual Studio 411
DTrace 412

DTrace on FreeBSD 412
Linux SystemTap emulation of DTrace 412

Table of Contents

[xiii]

Performance related features by version 413
Aggressive PostgreSQL version upgrades 413
8.1 415
8.2 415
8.3 416
8.4 417
9.0 419

Replication 419
Queries and EXPLAIN 420
Database development 421
Configuration and monitoring 422
Tools 423
Internals 423

Summary 424
Index 427

Preface
PostgreSQL has become an increasingly viable database platform to serve as storage
for applications, from classic corporate database use to the latest web apps. But
getting the best performance from it has not been an easy subject to learn. You need
just the right combination of rules of thumb to get started, solid monitoring, and
maintenance to keep your system running well, suggestions for troubleshooting, and
hints for add-on tools to add the features the core database doesn't try to handle on
its own.

What this book covers
Chapter 1, PostgreSQL Versions introduces how PostgreSQL performance has
improved in the most recent versions of the databases. It makes a case for using the
most recent version feasible, in contrast to the common presumption that newer
versions of any software are buggier and slower than their predecessors.

Chapter 2, Database Hardware discusses how the main components in server
hardware, including processors, memory, and disks, need to be carefully selected
for reliable database storage and a balanced budget. In particular, accidentally
using volatile write-back caching in disk controllers and drives can easily introduce
database corruption.

Chapter 3, Database Hardware Benchmarking moves on to quantifying the different
performance aspects of database hardware. Just how fast is the memory and raw
drives in your system? Does performance scale properly as more drives are added?

Chapter 4, Disk Setup looks at popular filesystem choices and suggests the trade-offs
of various ways to layout your database on disk. Some common, effective filesystem
tuning tweaks are also discussed.

Preface

[2]

Chapter 5, Memory for Database Caching digs into how the database is stored on disk,
in memory, and how the checkpoint process serves to reconcile the two safely. It
also suggests how you can actually look at the data being cached by the database,
to confirm whether what's being stored in memory matches what you'd expect
to be there.

Chapter 6, Server Configuration Tuning covers the most important settings in the
postgresql.conf file, what they mean, and how you should set them. And the
settings you can cause trouble by changing are pointed out, too.

Chapter 7, Routine Maintenance starts by explaining how PostgreSQL determines what
rows are visible to which clients. The way visibility information is stored requires a
cleanup process named VACUUM to reuse leftover space properly. Common issues and
general tuning suggestions for it and the always running autovacuum are covered.
Finally, there's a look at adjusting the amount of data logged by the database, and
using a query log analyzer on the result to help find query bottlenecks.

Chapter 8, Database Benchmarking investigates how to get useful benchmark results
from the built-in pgbench testing program included with PostgreSQL.

Chapter 9, Database Indexing introduces indexes in terms of how they can reduce the
amount of data blocks read to answer a query. That approach allows for thoroughly
investigating common questions like why a query is using a sequential scan instead
of an index in a robust way.

Chapter 10, Query Optimization is a guided tour of the PostgreSQL optimizer, exposed
by showing the way sample queries are executed differently based on what they are
asking for and how the database parameters are set.

Chapter 11, Database Activity and Statistics looks at the statistics collected inside the
database, and which of them are useful to find problems. The views that let you
watch query activity and locking behavior are also explored.

Chapter 12, Monitoring and Trending starts with how to use basic operating system
monitoring tools to determine what the database is doing. Then it moves onto
suggestions for trending software that can be used to graph this information
over time.

Chapter 13, Pooling and Caching explains the difficulties you can encounter when
large numbers of connections are made to the database at once. Two types of
software packages are suggested to help: connection poolers, to better queue
incoming requests, and caches that can answer user requests without connecting
to the database.

Preface

[3]

Chapter 14, Scaling with Replication covers approaches for handling heavier system
loads by replicating the data across multiple nodes, typically a set of read-only nodes
synchronized to a single writeable master.

Chapter 15, Partitioning Data explores how data might be partitioned into subsets
usefully, such that queries can execute against a smaller portion of the database.
Approaches discussed include the standard single node database table partitioning,
and using PL/Proxy with its associated toolset to build sharded databases across
multiple nodes.

Chapter 16, Avoiding Common Problems discusses parts of PostgreSQL that regularly
seem to frustrate newcomers to the database. Bulk loading, counting records, and
foreign key handling are examples. This chapter ends with a detailed review of what
performance related features changed between each version of PostgreSQL from 8.1
to 9.0. Sometimes, the best way to avoid a common problem is to upgrade to version
where it doesn't happen anymore.

What you need for this book
In order for this book to be useful, you need at least access to a PostgreSQL client
that is allowed to execute queries on a server. Ideally, you'll also be the server
administrator. Full client and server packages for PostgreSQL are available for most
popular operating systems at http://www.postgresql.org/download/.

All of the examples here are executed at a command prompt, usually running the
psql program. This makes them applicable to most platforms. It's straightforward
to do many of these operations instead using a GUI tool for PostgreSQL, such as the
pgAdmin III program.

There are some scripts provided that are written in the bash scripting language. If
you're on Windows, the cygwin software suite available from http://www.cygwin.
com/ provides a way to get common UNIX tools such as bash onto your system.

Who this book is for
This book is aimed at intermediate to advanced database administrators using or
planning to use PostgreSQL. Portions will also interest systems administrators
looking to build or monitor a PostgreSQL installation, as well as developers
interested in advanced database internals that impact application design.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: " If you are sorting data, work_mem
determines when those sorts are allowed to execute in memory "

A block of code is set as follows:

shared_buffers = 2GB
checkpoint_segments = 32
checkpoint_completion_target = 0.9
wal_buffers = 16MB
max_connections = 300

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

time sh -c "dd if=/dev/zero of=bigfile bs=8k count=blocks && sync"
time dd if=bigfile of=/dev/null bs=8k

Any command-line input or output is written as follows:

$ psql -e -f indextest.sql > indextest.out

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

Preface

[5]

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in the text or the code—we would be grateful if you would report this to us. By
doing so, you can save other readers from frustration and help us improve
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/support, selecting your book, clicking on the
errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded
on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

PostgreSQL Versions
PostgreSQL certainly has a reputation. It's known for having a rich feature set and
very stable software releases. The secure stance which its default configuration takes
is simultaneously praised by security fans and criticized for its learning curve. The
SQL-specification conformance and data integrity features allow only the strictest
ways to interact with the database, which is surprising to those who come from a
background working with looser desktop database software. All of these points
have an element of truth to them.

Another part of PostgreSQL's reputation is that it's slow. This too has some truth
to it, even today. There are many database operations where "the right thing" takes
longer to do than the alternative. As the simplest example of this, consider the date
"February 29, 2009". With no leap year in 2009, that date is only valid as an abstract
one. It's not possible for this to be the real date of something that happened. If you
ask the database to store this value into a standard date field, it can just do that, the
fast approach. Alternatively, it can check whether that date is valid to store into the
destination field, note that there is no such date in a regular calendar, and reject your
change. That's always going to be slower. PostgreSQL is designed by and for the sort
of people who don't like cutting corners just to make things faster or easier, and in
cases where the only way you can properly handle something takes a while that may
be the only option available.

However, once you have a correct implementation of something, you can then go
back and optimize it. That's the mode PostgreSQL has been in for the last few years.
PostgreSQL usually rises above these smaller issues to give excellent database
performance. Parts of it have the sort of great design that outperforms simpler
approaches, even after paying the overhead that complexity can introduce. This is
a fairly recent phenomenon though, which explains quite a bit about the perception
that PostgreSQL is a slower database than its competitors.

PostgreSQL Versions

[8]

Performance of historical PostgreSQL
releases
In November of 2005, PostgreSQL 8.1 was released. It included a number of internal
architectural changes, some of which aimed to improve how fast the database
would run on a multi-processor system with many active clients. The result was
a major improvement in the ability of the database to scale upwards to handle a
heavy load. Benchmarks on modern hardware really highlight just how far that
version leapfrogged earlier ones. You can find an excellent performance comparison
of versions 8.0 through 8.4 from György Vilmos at http://suckit.blog.
hu/2009/09/29/postgresql_history. This shows exactly how dramatic
these improvements have been. These tests use the Online Transaction
Processing (OLTP) test of the sysBench benchmarking software, available
at http://sysbench.sourceforge.net/.

This test gives a transactions per second (TPS) figure that measures the total system
speed, and you can run it in either a read-only mode or one that includes writes. The
read-only performance improved by over four times from 8.0 to 8.1 and more than
doubled again by 8.3:

Version Peak Read-Only TPS # of clients at peak
8.0.21 1256 4
8.1.17 5620 14
8.2.13 8109 18
8.3.7 13984 22
8.4.1 13546 22

The rise in the number of clients at the peak load gives us an idea of how well the
database internals handle access to shared resources. The area 8.1 in particular
included a significant upgrade. Performance improved similarly on the write side,
with almost an 8 times gain between 8.0 and 8.3:

Version Peak Write TPS # of clients at peak
8.0.21 361 2
8.1.17 873 10
8.2.13 1358 14
8.3.7 2795 18
8.4.1 2713 12

Chapter 1

[9]

The small decrease in performance from 8.3 to 8.4 in both these tests is due to some
subtle re-tuning of the database to improve its worst-case performance. More
statistics are collected in 8.4 to improve complicated queries, at the expense of
slightly slowing the sort of trivial ones tested here. There's more about this
Chapter 10, Query Optimization.

These improvements have been confirmed by other benchmarking results, albeit
normally not covering such a wide range of versions. It's easy to see that any
conclusion about PostgreSQL performance reached before late 2005, when 8.1
shipped, is completely out of date at this point. The speed improvement in 2008's 8.3
release was an additional large leap. Versions before 8.3 are not representative of the
current performance and there are other reasons to prefer using that one or a later
one too.

Choosing a version to deploy
Because of these dramatic gains, if you have an older PostgreSQL system you'd
like to make faster, the very first thing you should ask yourself is not how to tweak
its settings, but instead, if it's possible to upgrade to a newer version. If you're
starting a new project, 8.3 is the earliest version you should consider. In addition
to the performance improvements, there were some changes to that version that
impact application coding that you'd be better off to start with to avoid needing
to retrofit later.

Chapter 16, Avoiding Common Problems includes a reference guide to what
performance-related features were added to each major version of PostgreSQL, from
8.1 through 9.0. You might discover that one of the features only available in a very
recent version is compelling to you, and therefore have a strong preference to use
that one. Many of these version-specific changes are also highlighted throughout
the book.

Upgrading to a newer major version
Until very recently, the only way to upgrade an existing PostgreSQL version to a
newer major version, such as going from 8.1.X to 8.2.X, was to dump and reload.
The pg_dump and/or pg_dumpall programs are used to write the entire contents of
the database to a file, using the newer versions of those programs. That way, if any
changes need to be made to upgrade, the newer dumping program can try to handle
them. Not all upgrade changes will happen automatically though. Then, depending
on the format you dumped in, you can either restore that just by running the script
it generates or use the pg_restore program to handle that task. pg_restore can be
a much better alternative in newer PostgreSQL versions that include a version with
parallel restore capabilities.

PostgreSQL Versions

[10]

If you are using a system that doesn't easily allow you to run
more than one system with PostgreSQL version at a time, such
as the current RedHat Linux RPM packages, getting both old
and new versions of PostgreSQL installed on your system
at the same time can be difficult. There are some changes to
improve this situation under development for PostgreSQL 9.0.
Make sure to check the feasibility of running more than one
version at once as part of planning an upgrade.

Dumping can take a while, and restoring can take even longer. While this is going
on, your database likely needs to be down, so that you don't allow any changes that
won't then be migrated over by the dump. For large databases, this downtime can be
both large and unacceptable.

The most demanding sites prefer near zero downtime, to run 24/7. There a dump and
reload is never an acceptable option. Until recently, the only real approach available
for doing PostgreSQL upgrades in those environments has been using statement
replication to do so. Slony is the most popular tool for that, and more information
about it is in the Chapter 14, Scaling with Replication. One of Slony's features is that you
don't have to be running the same version of PostgreSQL on all the nodes you are
replicating to. You can bring up a new node running a newer PostgreSQL version,
wait for replication to complete, and then switch over once it matches the original.

Now, there is another way available that works without needing any replication
software. A program originally called pg_migrator at http://pgfoundry.org/
projects/pg-migrator/ is capable of upgrading from 8.3 to 8.4 without the dump
and reload. This process is called in-place upgrading. You need to test this carefully,
and there are both known limitations and likely still unknown ones related to less
popular PostgreSQL features. Be sure to read the documentation of the upgrade
tool very carefully. Starting in PostgreSQL 9.0, this module is included with the core
database, with the name changed to pg_upgrade. While all in-place upgrades have
some risk and need careful testing, in many cases, pg_upgrade will take you from
8.3 or 8.4 to 9.0 and hopefully beyond.

The PostgreSQL development community is now committed to allowing in-place
upgrades to future versions. Now that terabyte and larger PostgreSQL installs are
common, upgrading only using dump and reload just isn't always practical.

Upgrades to PostgreSQL 8.3+ from earlier ones
The major internal changes of 8.3 make it impossible to upgrade from any earlier
version past it without dumping the entire database and reloading it into the later
one. This makes 8.3 a doubly important version milestone to cross. Not only is it much
faster than 8.2, once your data is in 8.3, you can perform in-place upgrades from there.

Chapter 1

[11]

Going from an earlier version to PostgreSQL 8.3 or later can be a difficult change.
Some older applications rely on non-character data types being transparently
cast to the TEXT type, a behavior removed from 8.3 for a variety of reasons. See
http://www.postgresql.org/docs/8.3/static/release-8-3.html for details.

While there's always a chance that upgrading your database version can introduce
new issues, it is particularly likely that applications written against an earlier
version will need to be updated to work against 8.3 or later. It is possible to work
around this issue by manually adding back the automatic typecasting features that
were removed. http://petereisentraut.blogspot.com/2008/03/readding-
implicit-casts-in-postgresql.html provides a sample. However, fixing the
behavior in your application instead is a more robust and sustainable solution to
the problem. The old behavior was eliminated because it caused subtle application
issues. If you just add it back, you'll both be exposed to those and need to continue
doing this extra cast addition step with every new PostgreSQL release. There is
more information available at http://blog.endpoint.com/2010/01/postgres-
upgrades-ten-problems-and.html on this topic and on the general challenges of
doing a major PostgreSQL upgrade.

Minor version upgrades
A dump/reload or the use of tools like pg_upgrade is not needed for minor version
updates, for example, going from 8.4.1 to 8.4.2. These simply require stopping the
server, installing the new version, and then running the newer database binary
against the existing server data files. Some people avoid ever doing such upgrades
once their application is running for fear that a change in the database will cause a
problem. This should never be the case for PostgreSQL. The policy of the PostgreSQL
project described at http://www.postgresql.org/support/versioning states
very clearly:

While upgrades always have some risk, PostgreSQL minor releases fix only
frequently-encountered security and data corruption bugs to reduce the risk of
upgrading. The community considers not upgrading to be riskier than upgrading.

You should never find an unexpected change that breaks an application in a minor
PostgreSQL upgrade. Bug, security, and corruption fixes are always done in a way
that minimizes the odds of introducing an externally visible behavior change, and if
that's not possible, the reason why and the suggested workarounds will be detailed
in the release notes. What you will find is that some subtle problems, resulting from
resolved bugs, can clear up even after a minor version update. It's not uncommon to
discover a report of a problem to one of the PostgreSQL mailing lists is resolved in
the latest minor version update compatible with that installation, and upgrading to
that version is all that's needed to make the issue go away.

PostgreSQL Versions

[12]

PostgreSQL or another database?
There are certainly situations where other database solutions will perform better.
For example, PostgreSQL is missing features needed to perform well on some
of the more difficult queries in the TPC-H test suite (see the Chapter 8, Database
Benchmarking for more details). It's correspondingly less suitable for running
large data warehouse applications than many of the commercial databases. If you
need queries like some of the very heavy ones TPC-H includes, you may find that
databases such as Oracle, DB2, and SQL Server still have a performance advantage
worth paying for. There are also several PostgreSQL-derived databases that include
features, making them more appropriate for data warehouses and similar larger
systems. Examples include Greenplum, Aster Data, and Netezza.

For some types of web applications, you can only get acceptable performance by
cutting corners on the data integrity features in ways that PostgreSQL just won't allow.
These applications might be better served by a less strict database such as MySQL
or even a really minimal one like SQLite. Unlike the fairly mature data warehouse
market, the design of this type of application is still moving around quite a bit. Work
on approaches using the key-value-based NoSQL approach, including CouchDB,
MongoDB, and Cassandra, are all becoming more popular at the time of writing this.
All of them can easily outperform a traditional database, if you have no need to run
the sort of advanced queries that key/value stores are slower at handling.

But for many "normal" database use cases, in the middle ground between those
two extremes, PostgreSQL performance in 8.3 reached a point where it's more
likely you'll run into the limitations of your hardware or application design before
the database is your limiting factor. Moreover, some of PostgreSQL's traditional
strengths, like its ability to handle complicated queries well and its heavy
programmability, are all still there.

PostgreSQL tools
If you're used to your database vendor supplying a full tool chain with the database
itself, from server management to application development, PostgreSQL may be
a shock to you. Like many successful open-source projects, PostgreSQL tries to
stay focused on the features it's uniquely good at. This is what the development
community refers to as the PostgreSQL core: the main database server, and
associated utilities that can only be developed as a part of the database itself. When
new features are proposed, if it's possible for them to be built and distributed "out
of core", this is the preferred way to do things. This approach keeps the database
core as streamlined as possible, as well as allowing those external projects to release
their own updates without needing to synchronize them against the main database's
release schedule.

Chapter 1

[13]

Successful PostgreSQL deployments should recognize that a number of additional
tools, each with their own specialized purpose, will need to be integrated with the
database core server to build a complete system.

PostgreSQL contrib
One part of the PostgreSQL core that you may not necessarily have installed is
what's called the contrib modules (it is named after the contrib directory they
are stored in). These are optional utilities shipped with the standard package, but
that aren't necessarily installed by default on your system. The contrib code is
maintained and distributed as part of the PostgreSQL core, but not required for
the server to operate.

From a code quality perspective, the contrib modules aren't held to quite as high of a
standard primarily by how they're tested. The main server includes heavy regression
tests for every feature, run across a large build farm of systems that look for errors.
The optional contrib modules don't get that same level of testing coverage. However,
the code itself is maintained by the same development team, and some of the
modules are extremely popular and well tested by users.

A list of all the contrib modules available is at http://www.postgresql.org/docs/
current/static/contrib.html.

Finding contrib modules on your system
One good way to check if you have contrib modules installed is to see if the
pgbench program is available. That's one of the few contrib components that
installs a full program, rather than just the scripts you can use. Here's a UNIX
example of checking for pgbench:

$ pgbench -V

pgbench (PostgreSQL) 9.0

If you're using an RPM or DEB packaged version of PostgreSQL, as the case would
be on many Linux systems, the optional postgresql-contrib package contains
all of the contrib modules and their associated installer scripts. You may have to
add that package using yum, apt-get, or a similar mechanism if it wasn't installed
already. On Solaris, the package is named SUNWpostgr-contrib.

PostgreSQL Versions

[14]

If you're not sure where your system PostgreSQL contrib modules are installed,
you can use a filesystem utility to search. locate works well for this purpose on
many UNIX-like systems, as does the find command. The file search utilities,
available on the Windows Start menu, will work. A sample file you could look
for is pg_buffercache.sql, which will be used in the upcoming chapter on
memory allocation. Here's where that might be on some of the platforms that
PostgreSQL supports:

RHEL and CentOS Linux systems will put the main file you need into
/usr/share/pgsql/contrib/pg_buffercache.sql

Debian or Ubuntu Linux systems will install the file at
/usr/share/postgresql/version/contrib/pg_buffercache.sql
Solaris installs it into /usr/share/pgsql/contrib/pg_buffercache.sql
The standard Windows one-click installer with the default options will
always include the contrib modules, and this one will be in C:\Program
Files\PostgreSQL/version/share/contrib/pg_buffercache.sql

Installing a contrib module from source
Building your own PostgreSQL from source code can be a straightforward exercise
on some platforms, if you have the appropriate requirements already installed on the
server. Details are documented at http://www.postgresql.org/docs/current/
static/install-procedure.html.

After building the main server code, you'll also need to compile contrib modules
like pg_buffercache by yourself too. Here's an example of how that would work,
presuming that your PostgreSQL destination is /usr/local/postgresql and that
there's a directory there named source you put the source code into (this is not
intended to be a typical or recommended structure you should use):

$ cd /usr/local/postgresql/source

$ cd contrib/pg_buffercache/

$ make

$ make install

/bin/mkdir -p '/usr/local/postgresql/lib/postgresql'

/bin/mkdir -p '/usr/local/postgresql/share/postgresql/contrib'

/bin/sh ../../config/install-sh -c -m 755 pg_buffercache.so '/usr/local/
postgresql/lib/postgresql/pg_buffercache.so'

/bin/sh ../../config/install-sh -c -m 644 ./uninstall_pg_buffercache.sql
'/usr/local/postgresql/share/postgresql/contrib'

/bin/sh ../../config/install-sh -c -m 644 pg_buffercache.sql '/usr/local/
postgresql/share/postgresql/contrib'

•

•

•

•

Chapter 1

[15]

It's also possible to build and install all the contrib modules at once by running
make/make install from the contrib directory. Note that some of these have more
extensive source code build requirements. The uuid-ossp module is an example of
a more challenging one to compile yourself.

Using a contrib module
While some contrib programs like pgbench are directly executable, most are utilities
that you install into a database in order to add extra features to it.

As an example, to install the pg_buffercache module into a database named abc,
the following command line would work (assuming the RedHat location of the file):

$ psql -d abc -f /usr/share/postgresql/contrib/pg_buffercache.sql

You could instead use the pgAdmin III GUI management utility, which is bundled
with the Windows installer for PostgreSQL, instead of the command line:

Navigate to the database you want to install the module into.
Click on the SQL icon in the toolbar to bring up the command editor.
Choose File/Open. Navigate to C:\Program Files\PostgreSQL/version/
share/contrib/pg_buffercache.sql and open that file.
Execute using either the green arrow or Query/Execute.

You can do a quick test of the module installed on any type of system by running the
following quick query:

SELECT * FROM pg_buffercache;

If any results come back, the module was installed. Note that pg_buffercache will
only be installable and usable by database superusers.

pgFoundry
The official home of many PostgreSQL-related projects is pgFoundry:
http://pgfoundry.org/.

pgFoundry only hosts software for PostgreSQL, and it provides resources like
mailing lists and bug tracking in addition to file distribution. Many of the most
popular PostgreSQL add-on programs are hosted there:

Windows software allowing access to PostgreSQL through .Net and OLE
Connection poolers like pgpool and pgBouncer
Database management utilities like pgFouine, SkyTools, and pgtune

•

•

•

•

•

•

•

PostgreSQL Versions

[16]

While sometimes maintained by the same people who work on the PostgreSQL core,
pgFoundry code varies significantly in quality. One way to help spot the healthier
projects is to note how regularly and recently new versions have been released.

Additional PostgreSQL-related software
Beyond what comes with the PostgreSQL core, the contrib modules, and software
available on pgFoundry, there are plenty of other programs that will make
PostgreSQL easier and more powerful. These are available at sources all over the
Internet. There are actually so many available that choosing the right package
for a requirement can itself be overwhelming.

Some of the best programs will be highlighted throughout the book, to help provide
a short list of the ones you should consider early. This approach, where you get
a basic system running and then add additional components as needed, is the
standard way large open-source projects are built.

It can be difficult for some corporate cultures to adapt to that style such as the ones
where any software installation requires everything from approval to a QA cycle. In
order to improve the odds of your PostgreSQL installation being successful in such
environments, it's important to start early on introducing this concept. Additional
programs to add components building on the intentionally slim database core will be
needed later, and not all of what's needed will be obvious at the beginning.

PostgreSQL application scaling lifecycle
While every application has unique growth aspects, there are many common
techniques that you'll find necessary as an application using a PostgreSQL
database becomes used more heavily. The chapters of this book each focus on
one of the common aspects of this process. The general path that database servers
follow includes:

1. Select hardware to run the server on. Ideally, you'll test that hardware to
make sure it performs as expected too.

2. Set up all the parts of database disk layout: RAID level, filesystem, and
possibly table/index layout on disk.

3. Optimize the server configuration.
4. Monitor server performance and how well queries are executing.
5. Improve queries to execute more efficiently, or add indexes to help

accelerate them.

Chapter 1

[17]

6. As it gets more difficult to just tune the server to do more work, instead
reduce the amount it has to worry about by introducing connection pooling
and caching.

7. Replicate the data onto multiple servers and distribute reads among them.
8. Partition larger tables into sections. Eventually, really large ones may need

to be split so that they're written to multiple servers simultaneously.

This process is by no means linear. You can expect to make multiple passes over
optimizing the server parameters. It may be the case that you decide to buy newer
hardware first, rather than launching into replication or partitioning work that
requires application redesign work. Some designs might integrate caching into the
design from the very beginning. The important thing is to be aware of the various
options available and to collect enough data about what limits the system is reaching
to decide which of the potential changes is most likely to help.

Performance tuning as a practice
Work on improving database performance has its own terminology, just like any
other field. Here are some terms or phrases that will be used throughout the book:

Bottleneck or limiting factor: Both of these terms will be used to refer to the
current limitation that is keeping the performance from getting better.
Benchmarking: Running a test to determine how fast a particular operation
can run. This is often done to figure out where the bottleneck of a program
or system is.
Profiling: Monitoring what parts of a program are using the most resources
when running a difficult operation such as a benchmark. This is typically
to help prove where the bottleneck is, and whether it's been removed as
expected after a change. Profiling a database application usually starts with
monitoring tools such as vmstat and iostat. Popular profiling tools at the
code level include gprof, oprofile, and dtrace.

One of the interesting principles of performance tuning work is that, in general, you
cannot figure out what the next bottleneck an application will run into is until you
remove the current one. When presented with a system that's not as fast as someone
would expect it to be, you'll often see people guessing what the current bottleneck is,
or what the next one will be. That's generally a waste of time. You're always better
off measuring performance, profiling the parts of the system that are slow, and using
that to guess at causes and guide changes.

•

•

•

PostgreSQL Versions

[18]

Let's say what you've looked at suggests that you should significantly increase
shared_buffers, the primary tunable for memory used to cache database reads
and writes. This normally has some positive impact, but there are potential negative
things you could encounter instead. The information needed to figure out which
category a new application will fall into, whether this change will increase or decrease
performance, cannot be predicted from watching the server running with the smaller
setting. This falls into the category of chaos theory: even a tiny change in the starting
conditions can end up rippling out to a very different end condition, as the server
makes millions of decisions and they can be impacted to a small degree by that change.
Similarly, if shared_buffers is set too small, there are several other parameters that
won't work as expected at all, such as those governing database checkpoints.

Since you can't predict what's going to happen most of the time, the mindset you
need to adopt is one of heavy monitoring and change control. Monitor as much
as possible—from application to database server to hardware. Introduce a small
targeted change. Try to quantify what's different and be aware that some changes
you have rejected as not positive won't always stay that way forever. Move the
bottleneck to somewhere else, and you may discover that some parameter that
didn't matter before is now suddenly the next limiting factor.

There's a popular expression on the mailing list devoted to PostgreSQL performance
when people speculate about root causes without doing profiling to prove their
theories: "less talk, more gprof". While gprof may not be the tool of choice for
every performance issue, given it's more of a code profiling tool than a general
monitoring one, the idea that you measure as much as possible before speculating
as to the root causes is always a sound one. You should also measure again
to validate your change did what you expected too.

Another principle that you'll find a recurring theme of this book is that you must
be systematic about investigating performance issues. Do not assume your server
is fast because you bought it from a reputable vendor; benchmark the individual
components yourself. Don't start your database performance testing with application
level tests; run synthetic database performance tests that you can compare against
other people's first. That way, when you run into the inevitable application
slowdown, you'll already know your hardware is operating as expected and that
the database itself is running well. Once your system goes into production, some
of the basic things you might need to do in order to find a performance problem,
such as testing hardware speed, become impossible to take the system down.

Chapter 1

[19]

You'll be in much better shape if every server you deploy is tested with a common
methodology, which is exactly what later chapters here lead you through. Just
because you're not a "hardware guy", it doesn't mean you should skip over the parts
here that cover things like testing your disk performance. You need to perform work
like that as often as possible when exposed to new systems—that's the only way
to get a basic feel of whether something is operated within the standard range
of behavior or if instead there's something wrong.

Summary
PostgreSQL has come a long way in the last five years. After building solid database
fundamentals, the many developers adding features across the globe have made
significant strides in adding both new features and performance improvements in
recent releases. The features added to the latest PostgreSQL 9.0, making replication
and read scaling easier than ever before, are expected to further accelerate the types
of applications the database is appropriate for.

The extensive performance improvements in PostgreSQL 8.1 and 8.3 in
particular shatter some earlier notions that the database server was slower
than its main competitors.
There are still some situations where PostgreSQL's feature set results in
slower query processing than some of the commercial databases it might
otherwise displace.
If you're starting a new project using PostgreSQL, use the latest version
possible (and strongly prefer to deploy 8.3 or later).
PostgreSQL works well in many common database applications, but certainly
there are applications, it's not the best choice for.
Not everything you need to manage and optimize a PostgreSQL server
will be included in a basic install. Be prepared to include some additional
number of utilities that add features outside of what the core database
aims to provide.
Performance tuning is best approached as a systematic, carefully
measured practice.

•

•

•

•

•

•

Database Hardware
This chapter aims to help prioritize spending when planning out the purchase of
a new server intended to run PostgreSQL. If you already have a running database
server, following the instructions in Chapter 3, Database Hardware Benchmarking and
Chapter 8, Database Benchmarking might be a more appropriate place to start at than
here. Ultimately, you may end up taking a few round trips alternating through that
material and what's covered here. For example, if you benchmark your server, and
the disks seem slow, the background here might give you an idea what hardware
change you could make to improve that. Once that's done, it's back to benchmarking
again; repeat until performance matches expectations.

Balancing hardware spending
One of the reasons that working with open-source databases such as PostgreSQL can
be so effective is that every dollar you save on software licensing can be put toward
better hardware instead. The three main components you'll need to balance in your
budget are CPUs, memory, and disks, with the disk controller as a related and
critical part too.

CPUs
Currently, available processors are bundling at least two and possibly as many
as eight cores into each CPU, making the core count the figure of merit for most
database applications. There are two basic decisions you need to make while
deciding which CPU solution would best match your database application:

1. Which processor family? Nowadays, this normally boils down to choosing
among the various 64 bit product lines from Intel or AMD, although there are
some other less popular choices still floating around (Itanium, SPARC, and
so on).

2. Do you get more cores or faster cores?

Database Hardware

[22]

These choices are sometimes more tied together than you might think. Currently,
Intel has a lead in delivering individual processor cores that are the fastest around,
often due to faster transfers between the processor and system RAM. But the
processors and related parts are more expensive too. AMD still is competitive at
providing more cores per dollar, and their server class designs normally do a good
job making the best of the memory available to each core. But if what you want is
many more affordable cores instead, that's where AMD is stronger. AMD also has a
better history of making its fastest processors available in configurations with many
sockets, when you want to put more than two physical CPUs into a single server.

The best way to figure out which class of database app you have—more cores or
faster cores—is to monitor an existing server using tools such as top. If there's
a small number of processes running using a single CPU each, that's the sort of
workload where faster cores are better. That tends to happen if you have giant
queries running in a batch fashion, for example when large quantities of data need to
be sorted to deliver any single report. But if all the CPUs are active with many more
concurrent processes instead, then you'd likely benefit better from more cores. That's
normally what you'll see in applications with a larger user count, such as databases
backing web applications.

If you don't have the benefit of a working system to inspect, you can try to
guess which type of situation you're in by noting the limitations of the database.
PostgreSQL does not allow splitting a single query across more than one core, what's
called parallel query by some other databases that support it. That means that if you
have any one query or small number of queries that must run as fast as possible, the
only way to do that is to prioritize getting faster cores.

Another situation where getting a faster core is the better choice is if you need
to prioritize data loading or export situations. PostgreSQL's best performing
data import method, COPY, can easily become (but isn't always) limited by CPU
performance, where that turns into the bottleneck for operations. While it's possible
to split input files into pieces and load them in parallel, that's something you'll need
to build or acquire yourself, rather than something the server knows how to do for
you. Exporting a copy of the database using the pg_dump utility is another example
of something that can become CPU limited on some systems.

Memory
How much to prioritize memory for your application really depends on the size of
the working set of data needed to handle the most common operations. Generally,
adding more RAM will provide a significant performance boost. There are a few
situations where you'd be better served doing something else instead:

Chapter 2

[23]

If your data set is small enough to fit into a smaller amount of RAM, adding
more won't help you much. You probably want faster processors instead.
When running applications that scan tables much larger than what you can
feasibly purchase as RAM, such as in many data warehouse situations, you
might be better served by getting faster disks rather than more memory.

The normal situation where more memory helps most is when the data you access
frequently will fit with the larger amount, but not with the smaller. This happens more
often than you might think because of the way database B-tree indexes are stored.
Even if you can't fit the entirety of a table or even its index in memory, being able to
store a good sized fraction of the index can mean that index-based data lookups will
be significantly sped up. Having the most "popular" blocks from the top of the tree
structure cached is helpful even if you can't fit all the leaves into memory too.

Once you have an application running, you can usually get a much better idea
how memory is being used by looking inside the PostgreSQL buffer cache (and
potentially inside the operating system one as well) and seeing what data it prefers
to keep around. The section on using pg_buffercache in this book shows how
to monitor that data.

Disks
While it's always possible to run into situations where the CPU in your database
server is its bottleneck, it's downright likely that you'll run into a disk bottleneck—
particularly if you only have a drive or two in the system. A few years ago, the basic
two choices in hard drives were the inexpensive ATA (also known as IDE) drives
used in desktops versus the more serious SCSI drives aimed at servers.

Both technologies have marched forward, and the current choice you're most likely
to run into when configuring a database server is whether to use Serial ATA (SATA)
or Serial Attached SCSI (SAS). It's possible to find nearly identical drives available
in both interfaces, and there are even drive controllers that allow attaching either
kind of drive. Combined with a narrowing performance difference between the
two, picking between them is harder than ever.

The broad parameters of each technology are straightforward to compare. Here's the
state of things as this is being written:

SAS disks:
The maximum available RPM is higher: 10,000 or 15,000
Not as much drive capacity: 73 GB-1 TB are popular sizes
Cost per MB is higher

•

•

•

°

°

°

Database Hardware

[24]

SATA disks:
Drives typically have a slower RPM: 7200 is standard, some
10,000 designs exist such as the Western Digital VelociRaptor
Higher drive capacity: 2 TB available
Cost per MB is lower

Generally, you'll find individual SAS disks to be faster even than SATA ones with
similar specifications. In particular, you're likely to see better seek performance on
random I/O due to faster drive mechanics in SAS, and sometimes a faster transfer
rate from the disk too. Also, because the SAS drives have supported advanced
features such as command queuing for longer, it's more likely your operating
system will have matching support to take advantage of them.

RAID
The Redundant Array of Inexpensive Disks (RAID) approach is the standard
way to handle both the performance and reliability limitations of individual disk
drives. A RAID array puts many disks, typically of exactly the same configuration,
into a set that acts like a single disk—but with either enhanced performance,
reliability, or both. In some cases the extra reliability comes from computing what's
called parity information for writes to the array. Parity is a form of checksum on
the data, which allows reconstructing it even if some of the information is lost.
RAID levels that use parity are efficient from a space perspective at writing data in
a way that will survive drive failures, but the parity computation overhead can be
significant for database applications.

The most common basic forms of RAID arrays used are:

RAID 0: It is also called as Striping. Multiple disks are used at the same time,
spreading reads and writes over each of them in parallel. This can be almost
a linear improvement (two disks reading twice as fast as a single one), but
a failure on any volume in the set will lose all the data.
RAID 1: It is also called as Mirroring. Here more copies of the same data are
put onto multiple disks. This can sometimes improve performance—a good
RAID 1 mirroring across two disks might handle two reads by sending one
to each drive. Reads executed in parallel against both drives can effectively
double average seeks per second. But generally, the reason for RAID 1 is
redundancy: if a single drive fails, the system will continue operating using
the other one.

•

°

°

°

•

•

Chapter 2

[25]

RAID 10 or 1+0: This first takes pairs of disks and mirrors then using RAID
1. Then, the resulting set is striped using RAID 0. The result provides both
high performance and the ability to tolerate any single disk failure, without
as many ways for speed to suffer in the average and worst case as RAID 5/6.
RAID 10 is particularly appropriate for write-heavy environments, where
the parity computation overhead of RAID 5/6 can cause disk performance
to suffer. Accordingly, it's the preferred RAID level for high-performance
database systems.
RAID 5: It is also called as Striped with Parity. This approach sits midway
between 0 and 1. You stripe data across multiple drives similarly to RAID
0, which improves read performance. But some redundant data is added to
a parity drive. If one of the disks in the array is lost, the missing data can be
recomputed from the ones left using that parity information. While this is
efficient in terms of how little space is wasted relative to the tolerance for
disk failures provided, write performance in particular can suffer in RAID 5.
RAID 6: Similar to RAID 5, except with more parity information, enabling
survival even with two disk failures. It has the same fundamental advantages
and disadvantages. RAID 6 is an increasingly common way to cope with the
fact that rebuilding a RAID 5 array after a disk loss can take a really long
time on modern, high capacity drives. The array has no additional fault
tolerance during that period, and seeing a second drive failure before that
rebuild finishes is not that unlikely when it takes many hours of intense disk
activity to rebuild. Disks manufactured in the same batch are surprisingly
likely to fail in groups.

To be fair in any disk performance comparison, you need to consider that most
systems are going to have a net performance from several disks, such as in a RAID
array. Since SATA disks are individually cheaper, you might be able to purchase
considerably more of them for the same budget than had you picked SAS instead.
If your believe your application will get faster if it is spread over more disks, being
able to buy more of them per dollar spent can result in an overall faster system. Note
that the upper limit here will often be your server's physical hardware. You only
have so many storage bays or controllers ports available, and larger enclosures can
cost more both up-front and over their lifetime. It's easy to find situations where
smaller numbers of faster drives—which SAS provides—is the better way to go. This
is why it's so important to constantly benchmark both hardware and your database
application, to get a feel of how well it improves as the disk count increases.

•

•

•

Database Hardware

[26]

Drive error handling
Just because it's possible to buy really inexpensive SATA drives and get good
performance from them, that doesn't necessarily mean you want to put them in a
database server. It doesn't matter how fast your system normally runs at if a broken
hard drive has taken it down and made the server unusable.

The first step towards reliable hard drive operation is for the drive to accurately
report the errors it does run into. This happens through two mechanisms: error codes
reported during read and write operations, and drive status reporting through the
SMART protocol. SMART provides all sorts of information about your drive, such
as its temperature and results of any self-tests run.

When they find bad data, consumer SATA drives are configured to be aggressive
in retrying and attempting to correct that error automatically. This makes sense
given that there's typically only one copy of that data around, and it's fine to spend
a while to retry rather than report the data lost. But in a RAID configuration, as
often found in a database environment, you don't want that at all. It can lead to a
timeout and generally makes things more difficult for the RAID controller. Instead,
you want the drive to report the error quickly, so that an alternate copy or copies can
be used instead. This form of error handling change is usually the main difference
in SATA drives labeled "enterprise" or "RAID edition". Drives labeled that way will
report errors quickly, where the non-RAID versions will not. Having to purchase
the enterprise version of a SATA hard drive to get reliable server error handling
operation does close some of the price gap between them and SAS models. This can
be adjustable in drive firmware. However, see http://en.wikipedia.org/wiki/
TLER for more information about drive features in this area.

Generally, all SAS disks will favor returning errors so data can be reconstructed
rather than trying to self-repair. Additional information about this topic is available
as part of a commentary from Network Appliance about the drive reliability studies
mentioned in the next section: http://storagemojo.com/2007/02/26/netapp-
weighs-in-on-disks/

Using an external drive for a database
External drives connected over USB or Firewire can be quite crippled
in their abilities to report SMART and other error information, due to
both the limitations of the common USB/Firewire bridge chipsets used
to connect them and the associated driver software. They may not
properly handle write caching for similar reasons. You should avoid
putting a database on an external drive using one of those connection
methods. Newer external drives using external SATA (eSATA) are much
better in this regard, because they're no different from directly attaching
the SATA device.

Chapter 2

[27]

Hard drive reliability studies
General expected reliability is also an important thing to prioritize. There have
been three excellent studies of large numbers of disk drives published in the last
few years:

Google: Failure Trends in a Large Disk Drive Population
http://research.google.com/archive/disk_failures.pdf

Carnegie Mellon Study: Disk failures in the real world
http://www.cs.cmu.edu/~bianca/fast07.pdf

University of Wisconsin-Madison and Network Appliance: An Analysis
of Data Corruption in the Storage Stack http://www.usenix.org/event/
fast08/tech/full_papers/bairavasundaram/bairavasundaram.pdf
(long version) or http://www.usenix.org/publications/login/2008-06/
openpdfs/bairavasundaram.pdf (shorter version)

The data in the Google and Carnegie Mellon studies don't show any significant bias
toward the SCSI/SAS family of disks being more reliable. But the U of W/Netapp
study suggests "SATA disks have an order of magnitude higher probability of
developing checksum mismatches than Fibre Channel disks". That matches the idea
suggested above, that error handling under SAS is usually more robust than on
similar SATA drives. Since they're more expensive, too, whether this improved error
handling is worth paying for depends on your business requirements for reliability.
This may not even be the same for every database server you run. Systems where
a single master database feeds multiple slaves will obviously favor using better
components in the master as one example of that.

You can find both statistically reliable and unreliable hard drives with either type of
connection. One good practice is to only deploy drives that have been on the market
long enough that you can get good data from actual customers on the failure rate.
Newer drives using newer technology usually fail more often than slightly older
designs that have been proven in the field, so if you can't find any reliability
surveys that's reason to be suspicious.

Drive firmware and RAID
In some disk array configurations, it can be important to match the firmware version
of all the drives used for reliable performance. SATA disks oriented at consumers
regularly have large changes made to the drive firmware, sometimes without a
model number change. In some cases it's impossible to revert to an earlier version
once you've upgraded a drive's firmware, and newer replacement drives may not
support running an earlier firmware either. It's easy to end up where you can't
purchase a replacement for a damaged drive even if the model is still on the market.

•

•

•

Database Hardware

[28]

If you're buying a SAS drive, or one of the RAID oriented enterprise SATA ones, these
tend to have much better firmware stability. This is part of the reason these drives lag
behind consumer ones in terms of maximum storage capacity. Anyone who regularly
buys the latest, largest drives available in the market can tell you how perilous that
is—new drive technology is rather unreliable. It's fair to say that the consumer market
is testing out the new technology. Only once the hardware and associated firmware
has stabilized does work on the more expensive, business oriented versions such
as SAS versions begin. This makes it easier for the manufacturer to keep firmware
revisions stable as new drive revisions are released—the beta testing by consumers
has already worked out many of the possible bugs.

SSDs
The latest drive technology on the market right now are Solid State Drives (SSD),
also called flash disks. These provide permanent memory storage without any
moving parts. They can vastly outperform disks with moving parts, particularly for
applications where disk seeking is important—often the case for databases and they
should be more reliable too.

There are three major reasons why more databases don't use SSD technology yet:
Maximum storage capacity is low, and databases tend to be big
Cost for the storage you do get is fairly high
Most SSD designs do not have a well designed write-cache on them

Due to how the erasing mechanism on a SSD works, you must have a write
cache—typically a few kilobytes, to match the block size of the flash cells—for them
to operate a way that they will last a long time. Writes are cached until a full block
of data is queued up, then the flash is erased and that new data written.

While small, these are still effectively a write-back cache, with all the potential data
corruption issues any such design has for database use (as discussed in detail later
in this chapter). Some SSDs include a capacitor or similar battery backup mechanism
to work around this issue; the ones that do not may have very rare but still real
corruption concerns.

Until SSD manufacturers get better about describing exactly what conditions the
write-cache in their device can be lost, this technology remains an unknown risk for
database use, and should be approached with caution. The window for data loss
and therefore database corruption is very small, but it's often there. Also you usually
can't resolve that issue by using a controller card with its own battery-backed cache.
In many cases, current generation cards won't talk to SSDs at all. And even if they
can, the SSD may not accept and honor the same commands to disable its write
cache that a normal drive would—because a working write cache is so central to the
longevity aspects of the drive.

•
•
•

Chapter 2

[29]

Disk controllers
One of the most critical aspects of PostgreSQL performance is also one of the easiest
to overlook. Several hardware trends have made the disk controller seem less
important now:

Increasing CPU speeds and improved Direct Memory Access (DMA)
approaches make off-loading disk work to a controller card seemingly
less valuable. There is little chance that your controller will be any faster
at previously expensive tasks such as RAID parity computation than your
main system processor(s).
Recent operating-system's file system technology such as Linux Software
RAID and ZFS make hardware RAID, with its often proprietary storage,
seem less desirable.
Virtual machines and cloud deployments make the underlying disk
hardware almost completely disconnected from the interface that your
operating system sees.
Faster drives such as SSD seem to eliminate the need for an intermediate
intelligent controller.

Do not be fooled however. When it comes to committing information into a database,
spinning disk media—and even flash media such as SSDs—has some limitations that
no amount of software cleverness can overcome.

Hardware and Software RAID
When implementing a RAID array, you can do so with special hardware intended
for that purpose. Many operating systems nowadays, from Windows to Linux,
include software RAID that doesn't require anything beyond the disk controller
on your motherboard.

There are some advantages to hardware RAID. In many software RAID setups, such as
the Linux implementation, you have to be careful to ensure the system will boot off of
either drive in case of a failure. The BIOS provided by hardware cards normally takes
care of this for you. Also in cases where a failed drive has been replaced, it's usually
easier to setup an automatic rebuild with a hardware RAID card.

When hard drives fail, they can take down the entire system in the process, if they
start sending bad data to the motherboard. Hardware RAID controllers tend to be
tested for that scenario, motherboard drive controllers aren't necessarily.

•

•

•

•

Database Hardware

[30]

The main disadvantage to hardware RAID, beyond cost, is that if the controller fails
you may not be able to access the drives anymore using a different controller. There
is an emerging standard for storing the RAID metadata in this situation, the SNIA
Raid Disk Data Format (DDF). It's not well supported by controller card vendors
yet though.

The biggest advantage to hardware RAID in many systems is the reliable write
caching they provide. This topic is covered in detail later in this chapter.

Recommended disk controllers
There are plenty of disk controllers on the market that don't do well at database
tasks. Here are a few products that are known to work well with the sort of
hardware that PostgreSQL is deployed on:

LSI's MegaRAID line has been a source for reliable, medium performance
SCSI and now SAS/SATA controllers for many years. They tend to have
smaller cache sizes and their older products in particular were not always
the fastest choice available, but their technology is mature and the drivers
you get tend to be quite stable. The current SAS products perform extremely
well in RAID10, the usual preferred topology for databases. Its RAID5
performance is still not very impressive.
Dell has offered a rebranded LSI MegaRAID card as their PowerEdge RAID
Controller (PERC) for some time now. The PERC6 is based on the LSI SAS
design mentioned above, as is its replacement the PERC H700 and H800
(avoid the H200, which has no write cache at all). The PERC5 and earlier
models tended to be slow, and the Dell customized firmware often didn't
work as well as the ones in the genuine LSI models. These issues are all
cleared up in the PERC6 and later models, which can easily clear 1GB/s
of reads from a properly configured 24 disk array.
3ware was one of the first companies to offer SATA RAID solutions, and
they're particularly well known for providing excellent Linux drivers. Some
of the earlier 3ware models had unimpressive performance, the current
9690SA is a solid midrange performer if configured correctly. 3ware has gone
through some company transitions; they were bought by AMCC, who were
then bought by LSI. Eventually you can expect that 3ware will be just another
LSI line.
HP provides a few RAID cards in their Smart Array series of products,
including the P400, P600, and P800. The main difference between these cards
is performance. The P800 is well respected as a card with high performance,
while the P400 and P600 are considered at best medium speed performers.

•

•

•

•

Chapter 2

[31]

Emulex and QLogic provide the most popular high-performance cards for
attaching Fiber Channel disk arrays to a server.
Areca is a less well known company than the rest on this list, but they've
gained a following among fans of high-performance SATA cards; some
models support SAS as well. Areca cards are featured in a few "white-box"
vendor systems provided by resellers, for those who prefer not to deal with
the big vendors mentioned above. One concern with Areca is getting a
management utility that is compatible with your system. The more expensive
models that include a built-in management network port, what they call their
"Out-of-Band Manager", are easiest to deal with here—just access the card
over the network via its web console.

Driver support for Areca cards depends heavily upon the
OS you're using, so be sure to check this carefully. Under
Linux for example, you may have to experiment a bit to get
a kernel whose Areca driver is extremely reliable, because
this driver isn't popular enough to get a large amount of
testing. The 2.6.22 kernel works well for several heavy
PostgreSQL users with these cards.

Typically, the cheapest of the cards you'll find on the above list sells currently for
around $300 USD. If you find a card that's cheaper than that, it's not likely to work
well. Most of these are what's referred to as Fake RAID. These are cards that don't
actually include a dedicated storage processor on them, which is one part that jumps
the price up substantially.

Instead, Fake RAID cards use your system's CPU to handle these tasks. That's
not necessarily bad from a performance perspective, but you'd be better off using
a simple operating system RAID (such as the ones provided with Linux or even
Windows) directly. Fake RAID tends to be buggy, have low quality drivers, and
you'll still have concerns about the volume not being portable to another type of
RAID controller. They won't have a battery-backed cache, either, which is another
major component worth paying for in many cases.

Prominent vendors of Fake RAID cards include Promise and HighPoint. The RAID
support you'll find on most motherboards, such as Intel's RAID, also falls into the
fake category. There are some real RAID cards available from Intel though, and they
manufacture the I/O processor chips used in several of the cards mentioned above.

•

•

Database Hardware

[32]

Even just considering the real hardware RAID options here, it's impossible to
recommend any one specific card because business purchasing limitations tend to
reduce the practical choices. If your company likes to buy hardware from HP, the
fact that Areca might be a better choice is unlikely to matter; the best you can do is
know that the P800 is a good card, while their E200 is absent from the above list for
good reason—it's slow. Similarly, if you have a big Dell purchasing contract already,
you're likely to end up with a PERC6 or H700/800 as the only practical choice. There
are too many business-oriented requirements that filter down what hardware is
practical to provide a much narrower list of suggestions than what's above.

Attached storage—SAN and NAS
If you are connecting hard drives directly to your server through the motherboard
or add-in cards, without leaving the case itself, that's referred to as direct-attached
storage (DAS). The other alternative is to use an external interface, usually Fiber
Channel or Ethernet, and connect a Storage Array Network (SAN) or Network
Attached Storage (NAS) to hold the database disks. SAN and NAS hardware is
typically much more expensive than DAS, and easier to manage in complicated
ways. Beyond that, comparing the two is somewhat controversial.

There are external drive arrays available that attach over
SAS or eSATA cables, so they appear as direct attached
storage even though they are technically external to
the server chassis. Dell's PowerVault is a popular and
relatively inexpensive example that is known to scale to
192 DAS drives.

A SAN or NAS (when SAN is used below in this section, it's intended to refer
to both) has a few clear advantages over direct storage:

Easier to use many drives. It's hard to get direct storage to go much over
24 drives without moving into multiple external storage units, but that's
only a medium sized SAN that can be managed as a single component.
Read/write caching is often much larger. 16 GB of cache is not unusual in a
SAN, while direct storage will normally top out at closer to 1 GB. Also, SAN
designs can include a way to dump even that large cache to disk cleanly
in the event of any power failure, making it very hard to end up with a
corrupted database in the process no matter how long the outage.

•

•

Chapter 2

[33]

SANs are easier to make redundant across multiple servers. Typically you'll
have at least two fiber-channel ports in a SAN, making it easy to connect to
two systems if you want. Then either server can access the data, as long as
you partition access between the two properly.
The management interface for a SAN will usually include fancier rebuild
possibilities, and features such as snapshots that can make backup and
mirroring operations much easier.

There are a few potential drawbacks as well:

Performance can suffer compared to direct storage. Everything else being
equal, going through the SAN/NAS interface (Fiber Channel, Ethernet, and
so on) adds latency no matter what, and can introduce a write bottleneck
too. This can really slow your system down if, for example, you're using an
interface like Gigabit Ethernet with many disks behind it. You can easily fill
the network capacity long before you've reached the speed of all available
drives in that case.
SANs are very complicated. It's common to need to hire a consultant just
to get the system working as you expect, for your workload.
Costs are much higher in terms of performance per dollar on a SAN
compared to direct storage. If you really need the redundancy and
management features a SAN provides, they can make perfect sense. This
is particularly true if the SAN is so large it's serving out work for many
systems at once, which can make the whole system easier to cost justify.

If you want performance at a reasonable price, direct storage is where you'll end up
at. If you need a SAN or NAS, the reasons why are likely related to your business
rather than its performance.

If you follow the disk benchmarking practices recommended in this
book, you should be able to nail down results quickly enough to make
good performance a required component of the sales cycle for the SAN.
Considering their price tag, you certainly can make the vendor of the SAN
do some work as part of selling it if you benchmark before the system is
completely paid for, in a standard way whose results aren't likely to be
disputed. This can sidestep the need to hire an external consultant, by
leveraging the resources inside the vendor instead.

•

•

•

•

•

Database Hardware

[34]

Reliable controller and disk setup
PostgreSQL uses a Write-Ahead Log (WAL) to write data in a way that survives
a database or hardware crash. This is similar to the log buffer or REDO log found
in other databases. The database documentation covers the motivation and
implementation of the WAL at http://www.postgresql.org/docs/current/
static/wal.html

To quote from that introduction:

WAL's central concept is that changes to data files (where tables and indexes
reside) must be written only after those changes have been logged, that is, after log
records describing the changes have been flushed to permanent storage.

This procedure ensures that if your application has received a COMMIT for a
transaction, that transaction is on permanent storage, and will not be lost even
if there is a crash. This satisfies the durability portion of the ACID (atomicity,
consistency, isolation, durability) expectations databases aim to satisfy.

The tricky part of the WAL implementation is the "flushed to permanent storage"
part, which you might be surprised is going to take several pages to cover just in
this chapter—and come back up again in later ones, too.

Write-back caches
The CPUs and memory in your server are quite fast compared to its disk drives.
Accordingly, making the rest of the system wait for the disks, particulary when
things need to be written out, can drag overall performance down heavily. Systems
that wait for the disks to complete their writes before moving into their next task
are referred to as having a write-through cache. While the data may be stored
temporarily in a memory cache, until it's made it all the way through to the
physical disk, any write an application requested isn't considered complete.

The normal solution to making that faster is to introduce a different type of write
cache between the program doing the writing and disks. A write-back cache is one
where data is copied into memory, and then control returns to the application that
requested the write. Those writes are then handled asynchronously, at some future
time dictated by the design of the write-back cache. It can take minutes before the
data actually makes it to disk.

When PostgreSQL writes information to the WAL, and sometimes when it writes
to the regular database files too, that information must be "flushed to permanent
storage" in order for the database's crash corruption defense mechanism to work. So
what happens if you have a write-back cache that says the write is complete, but it
really isn't? People call these lying drives, and the result can be very bad:

Chapter 2

[35]

If you have a system with a write-back cache, and a system
crash causes the contents of that write-back cache to be
lost, this can corrupt a PostgreSQL database stored on that
drive and make it unusable. You can discover it takes expert
intervention to even get the database to start again, and
determining what data is damaged will be difficult.

Consider the case where you have committed a transaction. Details of that new
transaction might be spread across two data blocks on the drive. Now, imagine that
one of those made it to disk before the system crashed, but the other didn't. You've
now left the database in a corrupted state: one block refers to a transaction that
doesn't exist where it's supposed to in the other block.

Had at least all of the data blocks related to the WAL been written properly, the
database WAL could correct this error after the crash. But the WAL protection only
works if it can get honest information about whether information has been written
to the disks properly or not, and the "lying" write-back caches do not report that.

Sources of write-back caching
Servers are filled with write caches you need to be aware of:

Operating system write cache. This cache can easily be gigabytes in size.
Typically you can flush data out of this cache by forcing a "sync" operation
on the block that needs to be stored on disk. On POSIX systems (which
includes all UNIX-like ones), this is done with the fsync or fdatasync calls. In
some cases, it's possible to write directly in a sync mode, which is effectively
a write followed by fsync. The postgresql.conf setting wal_sync_method
controls which method is used, and it's possible to disable this altogether to
optimize for speed instead of safety.
Disk controller write cache. You'll find a write cache on most RAID controller
cards, as well as inside external storage such as a SAN. Common sizes right
now are 128 MB to 512 MB for cards, but gigabytes are common on a SAN.
Typically controllers can be changed to operate in the completely write-
through mode, albeit slowly. But by default, you'll normally find them in
write-back mode. Writes that can fit in the controller's cache are stored there,
the operating system is told the write is completed, and the card writes the
data out at some future time. To keep this write from being lost if power is
interrupted, the card must be configured with a battery. That combination is
referred to as a battery-backed write cache (BBC or BBWC).

•

•

Database Hardware

[36]

Disk drive write cache. All SATA and SAS disks have a write cache on them
that on current hardware is 8 MB to 32 MB in size. This cache is always
volatile: if power is lost, any data stored in there will be lost and they're
always write-back caches if enabled.

How can you make sure you're safe given all these write-back caches that might lose
your data? There are a few basic precautions to take:

Make sure whatever file system you're using properly implements fsync
calls, or whatever similar mechanism is used, fully. More details on this topic
can be found in the wal_sync_method documentation and in information
about file system tuning in later chapters here.
Monitor your driver controller battery. Some controller cards will monitor
their battery health, and automatically switch from write-back to write-
though mode when there is no battery or it's not working properly. That's
a helpful safety measure, but performance is going to drop hard when
this happens.
Disable any drive write caches. Most hardware RAID controllers will do this
for you, preferring their own battery-backed caches instead.

Disk controller monitoring
When you have a RAID controller card with a battery-backed cache, you probably
expect you'll need to monitor the card to determine when disks fail. But monitoring
controller battery health is an equally critical aspect of maintaining a reliable
database system when you're using this technology. If the battery fails and you're
using it in write-back mode, your writes are not safe. Similarly, if your power fails,
you should prefer shutting the database server down after a few minutes of power
loss to trying to keep it going. Integrating in power monitoring via a UPS or similar
mechanism should be part of your database server configuration, so that a short
outage results in an orderly shutdown. Consider the purpose of the controller battery
to protect yourself from really unexpected outages, like someone tripping over the
power cord. Even if the manufacturer claims the controller battery will last through
days of downtime, that's not a good reason to believe you'll actually be safe for an
extended outage. You should consider the battery as something you'd prefer to only
use for some number of minutes of protection. That may be the reality, particularly
in a case where the battery is older and has lost much of its capacity, and some
controller batteries don't start out with very much capacity. Be sure to run your
own tests rather than blindly believing the manufacturer specifications: your data
depends on it.

•

•

•

•

Chapter 2

[37]

Better RAID controllers will automatically disable write-back mode if
their battery stops working normally. If performance suddenly drops
on an older server, this is one potential cause.

Also don't forget that every UPS has a battery that degrades over time as well.
That's all the more reason to arrange an orderly shutdown of your server during a
power outage, rather than optimistically presuming you can keep it running until
power returns.

Disabling drive write caches
If your card doesn't disable all the drive write caches, or if you're using a software
RAID approach, you'll need to turn the caches off yourself. The best way to do this
is to see if it's possible to change the default write cache state using the utilities
provided by the drive manufacturer.

You should be able to do this through software as well. Here is a sample session
from a Linux system checking the write cache, toggling it off, confirming that
change took, and then toggling it on again:

hdparm -I /dev/sda | grep "Write cache"
 * Write cache
sudo hdparm -W 0 /dev/sda

/dev/sda:
 setting drive write-caching to 0 (off)
 write-caching = 0 (off)
hdparm -I /dev/sda | grep "Write cache"
 Write cache
hdparm -W 1 /dev/sda

/dev/sda:
 setting drive write-caching to 1 (on)
 write-caching = 1 (on)

Only the -W 0 configuration is completely safe for database use. The PostgreSQL
WAL documentation suggests similar commands to use for other operating systems.

Database Hardware

[38]

Performance impact of write-through caching
If you don't have a battery-backed write cache, and therefore can't utilize some
memory-based cache to accelerate fsync writes, commit performance on your
database can be quite bad. The worst-case here is where you have a single client that
is issuing a commit after every statement it executes. The reality of how a hard drive
works means that individual writes happen once each time the drive spins around.
Here are the measurements for the common drive speeds available right now, with
computed maximum commit rate:

Rotation speed Rotation time (ms) Max commits/second
5400 11.1 90
7200 8.3 120
10000 6.0 166
15000 4.0 250

It's important to realize how limiting this can be:

If you have a common 7200 rpm hard drive, no single client can
commit more than 120 transactions/second in any situation where
all that's available is a write-back cache.

It doesn't matter how many disks you have in a RAID array, or how you configure
your software. You must have hardware with a battery, enabling a non-volatile
write-back cache, in order to safely exceed this limit.

Some PostgreSQL installs use a RAID controller card just for this purpose, to provide
a BBWC, in Just a Bunch of Disks (JBOD) mode—where no RAID is being done
on the controller at all. Sometimes disks are used directly, and others layer software
RAID on top, which can have some advantages compared to hardware RAID.

If you have more than one client, you'll get more done per commit. It's normal to see
>500 committed transactions per second if you have a larger number of clients all
committing regularly, because each flushed disk write will include any queued up
commit requests from other clients, too. The other common technique here is to batch
commits into larger pieces, perhaps going 1000 records at a time rather than a single
one, in order to reduce the average impact of commit latency.

Another approach for accelerating systems that don't have a usable write cache is
asynchronous commit, covered in Chapter 6, Server Configuration Tuning.

Chapter 2

[39]

Summary
Building a database server with good performance is hard work. There are
many individual components that are available in multiple quality levels and
corresponding costs. Also there are plenty of small details you must get right or
you'll risk data corruption. Luckily, you don't have to start from scratch. Stick
to common, well understood components with known good performance, while
keeping an eye on reliability too, and you can build a well balanced database server
for a reasonable budget. Always make sure to run your own benchmarks on the
result though. It's very easy to sabotage even good equipment with the wrong
configuration when running a database.

Allocating your hardware budget among CPUs, memory, and disks is very
application dependent.
Carefully selecting and configuring your controller and disk caches is critical
for reliable database operation.
Make sure you are monitoring components in your server that are likely
to fail or have a known lifetime, particularly hard drives and the batteries
in disk controller cards.
Any disk write caches in your system must be confirmed to properly support
the write flushing mechanism the database uses, or database corruption
can result.
The maximum rate that database clients can commit transactions can be very
low without a properly implemented write-back cache.

•

•

•

•

•

Database Hardware
Benchmarking

After all the theory in the last chapter about what makes some systems perform well
or poorly, you might be wondering just how your own system measures. There are
several reasons to always do your own hardware benchmarks. The first is simply
to be systematic about your performance process. If you always measure things
yourself, you'll get a better feel for what good and bad performance looks like, one
that can help tip you off to even subtle problems.

Second, in the case of disks in particular, problems here are a very common,
underlying cause of database performance issues. If your disks are slow, and there
are many ways that can happen, your database will likely be slow too. It's important
when this happens to have accurate data on whether the problem is likely at the
hardware or software level.

The goal of your basic hardware testing should be to look for large configuration
errors, not to analyze every possible parameter. The sorts of problems you need to be
most concerned about are really obvious. And detailed optimization is better done at
the database application level.

CPU and memory benchmarking
The first thing worth testing on a new system is the speed of its memory, because
if this is slow both the CPU and disks will suffer accordingly. You might wonder
why this is so important. It's because database work is intensive in both these areas.
PostgreSQL works with database data in 8 KB pages, and it's constantly shuffling
those around to system memory as needed to satisfy queries. And looking through
those pages for the specific rows needed is CPU-intensive. Even on benchmarks
that focus on disk-heavy work, the speed of the underlying memory can have a
surprisingly high impact on results.

Database Hardware Benchmarking

[42]

memtest86+
One of the most valuable tools in the PC hardware technician's bag is memtest86+, a
program whose primary purpose is to find intermittent errors on PC memory. It's a
great way to burn-in new hardware and confirm that it works as expected.

You can download memtest86+ directly from its website from http://www.
memtest.org/ and create a bootable CD to run the program. Note that it's now
included as one of the boot options for many Linux distributions, both on the
installer media and when starting the OS normally too. Any Ubuntu installer CD
for example will include the memtest86+ current when that version was released.
Generally, if the program does not fully recognize your CPU hardware information,
you probably need a newer version to make sure you're getting accurate results.

Once you've started it from a bootable CD, memtest86+ reports the speed of the
various memory at each of the cache levels it identifies. The most useful one is the
MB/s value reported on the Memory: line. This will be how fast memory access is to
the main system RAM, and is good for confirming performance matches baselines. It
can be a quick way to confirm performance and stability if you're adjusting clocking
on your memory or CPU to try and speed things up.

One problem with this program is that it requires physical access to the system to
run, which isn't always practical. And since memtest86+ is only running a single
process to test memory, its reported total speed number isn't really representative of
the capabilities of modern processors. For that you'll need STREAM, which does run
easily from a remote session too.

STREAM memory testing
STREAM is a memory bandwidth testing program that came from testing
high-performance systems for scientific research. The program is hosted at
http://www.cs.virginia.edu/stream/ and that site includes a variety
of sample reports from the program too.

The STREAM project provides some binaries for several platforms, even Windows.
The available Linux binary hasn't worked out well in my own testing. In addition,
STREAM aims only to track the maximum bandwidth the system is capable of. One
of the things that you should be interested in for PostgreSQL use is also how much
memory bandwidth a single process can reach. As individual queries in PostgreSQL
will only run on one CPU, if that number is low you may be disappointed with how
lone queries run, even on an otherwise idle server.

Chapter 3

[43]

To try and work on both these problems, for Linux systems my stream-scaling
script available at http://github.com/gregs1104/stream-scaling tries to
automate a more comprehensive view of your memory performance. It downloads
the program, measures the total amount of cache in all the system processors, and
automatically compiles STREAM to use a value much larger than that. It then loops
from a single active thread (presumably running on a single core) upward until it's
using every processor on the server.

Even if you're sold on this idea, it will take you a while to get your own library
of references performance data assembled. A starting set from systems that I've
confirmed results from myself is included on the site, and a few examples from
there are included next.

STREAM and Intel vs. AMD
The following table shows the reported STREAM speeds by Processor/RAM for a few
servers, as the number of cores utilized increases. All except for the one Opteron
model (featuring eight sockets of six cores processors) are Intel systems. RAM
included here is all Double data rate synchronous dynamic random access memory,
more commonly known as DDR RAM. The main two standards in use in current
hardware are DDR2 and DDR3, and the RAM DDR column shows which standard
is used and what clock speed the memory is running at. The performance numbers
shown for different total core counts are in units of MB/s:

Processor Cores Frequency
(GHz)

RAM
DDR

1 Core 2 Cores 4 Cores All
Cores

T7200 2 2.00 2/667 2965 3084 3084
Q6600 4 2.40 2/800 4383 4537 4390 4390
Opteron 8431
(8 X 6)

48 2.40 2/800 4038 7996 13520 27214

Xeon E5506 4 2.13 3/800 7826 9016 9297 9297
i7 860 8 2.80 3/1600 9664 13096 14293 13231

This shows clear limiting of available bandwidth to a single core on all of the
recent systems with many cores, relative to total system bandwidth. That particular
problem has been more restrictive on AMD's systems than Intel's. Even though this
large AMD system can achieve 27 GB/s when heavily tasked, a single process barely
clears 4 GB/s.

Database Hardware Benchmarking

[44]

This is exactly why there aren't more AMD processors included in this list. From
mid-2008 to mid-2010, AMD has lagged considerably behind Intel in terms of
their memory technology on systems with small numbers of processor sockets.
They've fallen out of favor with the purchasing I've been involved in as a direct
result. Note the large memory speed jump for single core results starting with the
Intel 5500 series processor. That represents the introduction of Intel's Nehalem
architecture. That included a shift to faster DDR3 RAM, among other major memory
improvements, and was what pushed Intel far ahead for a solid two years.

An excellent graph showing just how wide the gap in memory performance
introduced by this change appears at http://www.advancedclustering.com/
company-blog/stream-benchmarking.html There you can see extensive results
expanding on the preceding. There's a giant leap starting with the Intel 5500 series,
compared to both earlier Intel designs and any AMD designs still using DDR2. As
described in the previous chapter, memory speed isn't everything if it comes at a
high enough cost, or if you're disk bound. But it's why the servers I have the most
data to report on recently have all been Intel based.

But as usual, AMD has recently bounced back. The latest AMD processors
released as of this writing are the 8 and 12 core 6100 series processors using their
Magny-Cours architecture, none of which are shown here yet. These processors
have closed much of the gap with Intel's designs, including a shift to DDR3. Like
earlier AMD designs, they are particularly good for systems where a large number
of processors and banks of RAM are involved. Intel's fast server hardware is much
more focused on systems with one or two processor sockets; AMD servers with 4 or
more sockets are easy to find. Early tests suggest that memory bandwidth may still
be a bit slower than Intel low core counts. Check the stream-scaling site for the
latest updates on processors tested for this particular aspect of their performance.
But you should be collecting your own numbers, too!

CPU benchmarking
It's rather hard to find a CPU benchmark that is more representative of
database performance more useful than just using a database to do something
processor-intensive. You can easily build some quick, PostgreSQL-oriented CPU
tests using the database psql client and its \timing feature, which shows you how
long each statement takes to run. Here's an example that just exercises the CPU
and memory, by adding the first million integers together with the always handy
generate_series set returning function:

\timing

SELECT sum(generate_series) FROM generate_series(1,1000000);

Chapter 3

[45]

Here's another more complicated example that may use some disk accesses too, in
addition to stressing CPU/memory; depends on the amount of RAM in your server:

\timing

CREATE TABLE test (id INTEGER PRIMARY KEY);

INSERT INTO test VALUES (generate series(1,100000));

EXPLAIN ANALYZE SELECT COUNT(*) FROM test;

Both the insertion time and how long it takes to count each value are interesting
numbers. The latter also includes some CPU/memory-intensive work related
to updating the hint bit values PostgreSQL uses to track transaction visibility
information; see Chapter 7, Routine Maintenance for more information about it.

Remember, the point of your CPU testing is not to map out a comprehensive
view of its performance in every regard. What you should focus on is making sure
performance matches similar hardware. And if this is an upgrade, that it exceeds
the expectations you have from older systems.

A more useful look at CPU capacity from a PostgreSQL perspective will be provided
in Chapter 8, Database Benchmarking. Running a SELECT-only test using pgbench
and more clients than your system has cores, when all the data fits in RAM, is a
very good way to see if your CPUs are delivering expected performance. That's my
preferred way to see how fast a new CPU I'm evaluating will work for real CPU
and memory limited workloads. Just note that the pgbench in PostgreSQL versions
before 9.0 can easily act as the bottleneck on results; more on this topic in that
later chapter.

Sources of slow memory and processors
If your memory doesn't look to be as fast as it should be, or your CPU results look
suspicious, there are a few common things to look for to figure out why.

Most memory is now designed to work in a dual-channel configuration, with pairs of
memory put only into specific slots. If that's not done correctly, you'll halve memory
speed by running in a single-channel setup. memtest86+ can note when this is
happening, and your BIOS may realize it if you look for the information.

Poor quality RAM can introduce a surprisingly large drop in system performance.
And just because you have fast memory in your server, that doesn't mean the
motherboard is taking advantage of it. The defaults on some systems are quite
conservative. Nowadays, your system should be looking up Serial Presence Detect
(SPD) information provided by your RAM, to determine how fast it should run. But
that doesn't always default to optimal performance, and manual tweaking of the
memory timing can be required.

Database Hardware Benchmarking

[46]

Recent high-performance PC RAM aimed at desktop systems uses a newer standard
for the same purpose, the Extreme Memory Profile (XMP) protocol, to communicate
the speed it's capable of running at to the system BIOS when you boot. But if your
BIOS doesn't default to checking and using XMP, which some don't, your RAM
will run at notably non-"extreme" speeds. You should be able to find out how fast
your RAM is expected to run as a series of timing values. The Intel i7 860 system
mentioned before using DDR3-1600 has timing values of 8-8-8-24 for example. The
motherboard did not run the RAM at those speeds until I'd adjusted several settings
in it. And just because your hardware vendor should be taking care of all this for you
doesn't mean it's safe to ignore this whole issue. It's easy for anyone to miss a step
and ship a system with degraded performance.

Another problem that you can run into is using memory that doesn't work well
with the clock speed of the processor you're using. Processors are often "locked"
to certain multiplier possibilities that are relative to the speed the main system
bus runs at. The motherboard ends up doing a complicated negotiation game
between the processor and the RAM to find a common denominator speed to run
everything at. For example, one of my older systems supported either DDR2-667 or
DDR-800 RAM, running at a memory clock of 333 or 400 MHz. The system processor
ran at 2.4 GHz, and only supported limited multiplier combinations. It turned out
that if I used DDR2-667, the common frequency the motherboard settled on was
running the memory bus at 300 MHz, with the CPU using a 8X multiplier. So the
RAM was essentially 10% under-clocked relative to its capabilities. Upgrading to
DDR2-800 instead used a 400MHz clock and a 6X CPU multiplier. That's a 33% jump
in memory speed just from using a better grade of RAM, to better match the CPU
clock possibilities, and overall system performance improved proportionately.

In addition to getting the memory and multiplier details right, processor power
management is an increasing source of issues when benchmarking hardware. Many
operating systems now default to having modest or aggressive processor power
management active by default. This is a surprisingly common issue on Linux for
example. The normal warning sign is that the processor is only shown as running at
1 GHz in /proc/cpuinfo, with correspondingly slow results on some benchmarks.
Normally you will need to adjust the Linux CPU governor setup to optimize for
performance, rather than lower power use, at least for the duration of the benchmark.
Exact details for how to adjust the governor vary by Linux distribution. You may
want to return to optimizing for lower energy use at the expense of some performance
afterwards, once you've confirmed performance can be good when needed.

Chapter 3

[47]

Physical disk performance
While a lot of high-level information about disk performance has been mentioned
already, if you want to get useful benchmarks from drives you'll need to know a
bit more about their physical characteristics. This will drop back to theory for a bit,
followed by examples of real measured disks that demonstrate common things you
can expect to see.

Random access and I/Os Per Second
Enterprise storage vendors like to talk in terms of Input/Outputs Per Second or
IOPS. If you're buying a SAN for example, expect to be asked "how many IOPS do
you expect in total and per spindle?" and for measurements provided by the vendor
proving good performance to be in this unit. This number represents typical disk
performance on a seek-heavy workload, and unfortunately it is a poor one to fixate
on for database applications. Databases are often complicated mixes of I/O with
caching involved—sequential reads, seeks, and commits all compete—rather than
always being seek-bound.

Spindle is often used as a synonym for a single disk drive, and is
used interchangeably here that way. It's more correctly used to only
refer to a single section of a disk, the part that rotates. In this case
common use trumps correctness for most writing about this subject.

It's straightforward to compute IOPS for a single disk. You'll need to track down the
manufacturer data sheet where they give the detailed timing specifications for the
drive. The Seagate Momentus 7200.4 laptop drive used in the examples here has
the following specifications:

Spindle Speed: 7,200 RPM
Average latency: 4.17 ms
Random read seek time: 11.0 ms

This models the fact that every disk access on a drive requires:

1. Seeking to the right track on the disk. That's the "random read seek time".
2. Waiting for the sector we want to read to show up under the read head.

That's the "Average [rotational] latency" time.

•

•

•

Database Hardware Benchmarking

[48]

The "average latency" figure here represents rotational latency. That will always
be exactly 1/2 of the rotation time of the drive. In this case, 7200RPM means one
rotation happens every 1/120 of a second, which means a rotation every 8.33 ms.
Since, on an average you won't have to wait for a full rotation, that's halved to give
an average, making for an expected rotation latency time of 4.17 ms. All 7200 RPM
drives will have an identical rotational latency figure, whereas seek times vary based
on drive size, quality, and similar factors.

IOPS is simply a measurement of the average time for both those operations, the seek
latency and the rotation latency, inverted to be a rate instead of an elapsed time. For
our sample disk, it can be computed like the following:

Rotational latency RL = 1 / RPM / 60 / 2 = 4.17ms
Seek time S=11.0ms
IOPS = 1/(RL + S)
IOPS = 1/(4.17ms + 11ms) = 65.9 IOPS

Here are a few resources discussing IOPS, including a calculator that you might
find helpful:

http://www.wmarow.com/strcalc/

http://www.dbasupport.com/oracle/ora10g/disk_IO_02.shtml

http://storageadvisors.adaptec.com/2007/03/20/sata-iops-
measurement/

Remember that IOPS is always a worst-case scenario. This is the performance the
drive is guaranteed to deliver, if it's being hammered by requests from all over the
place. It will often do better, particularly on sequential reads and writes.

Sequential access and ZCAV
In many database situations, what you're also concerned about is the streaming
sequential read or write rate of the drive, where it's just staying in one area instead
of seeking around. Computing this value is complicated by the nature of how disks
are built.

The first thing to realize about modern hard disks is that the speed you'll see from
them depends highly on what part of the disk you're reading from. Disks spin
at one speed all of the time, referred to as Constant Angular Velocity or CAV. A
typical drive nowadays will spin at 7200 RPM, and the actual disk platter is circular.
When the disk read/write head is near the outside of the disk, the speed of the part
passing underneath it is faster than on the inside. This is the same way that in a car,
the outside edge of a tire travels further than the inside one, even though the actual
rotation count is the same.

•

•

•

Chapter 3

[49]

Because of this speed difference, manufacturers are able to pack more data onto
the outside edge of the drive than the inside. The drives are actually mapped into a
series of zones with different densities on them. There is a longer discussion of this
topic at http://www.coker.com.au/bonnie++/zcav/ and using the zcav tool will
be shown later.

The practical result is that the logical beginning part of the disk is going to be
significantly faster than its end. Accordingly, whenever you benchmark a disk, you
have to consider what part of that disk you're measuring. Many disk benchmark
attempts give bad data because they're comparing a fast part of the disk, likely the
first files put onto the disk, with ones created later that are likely on a slower part.

Short stroking
As disks have this very clear, faster portion to them, and capacities are very large,
one observation you can easily make is that you should put the most important
pieces of data on the early parts of the disk. One popular technique named short
stroking limits the portion of the disk used to only include the fastest part, assuring
you'll only be accessing its best area. Short stroking can be done just by adjusting the
disk's partition table to only include the early part. You might partition the slower
portion anyway, but just not use it regularly. Saving it for backups or migration use
can be worthwhile. Occasionally you can force short stroking using more physical
means, such as a disk vendor or RAID controller tool that allows limiting the
capacity exposed to the operating system.

Commit rate
As covered in the previous chapter, how fast data can actually be committed
permanently to disk is a critical performance aspect for database transaction
processing. It's important to measure this area carefully. Speeds that are dramatically
higher than expected are usually a sign one of the write-caches has been put into
a volatile write-back mode, which as already explained can result in data loss and
database corruption. Some examples of how that can happen will be covered in
Chapter 4, Disk Setup.

If you don't have any non-volatile caching available, the basic commit rate for a drive
will be similar to its IOPS rating. Luckily PostgreSQL will put multiple transactions
into a physical commit if they aren't happening quickly enough.

Database Hardware Benchmarking

[50]

PostgreSQL test_fsync
In a source code build of PostgreSQL, the src/tools/fsync directory contains
a program named test_fsync that might also be included in some packaged
versions. This aims to test the commit rate for each of the ways a given PostgreSQL
install might commit records to disk. Unfortunately this program doesn't give
results consistent with other tests, and before PostgreSQL 9.0 it's in the wrong units
(elapsed times instead of operations per second). Until it's improved a bit further its
output can't be relied upon.

INSERT rate
Each time you INSERT a record in a standard PostgreSQL install, it does a commit at
the end. Therefore, any program that does a series of inserts in a loop and times them
can measure the effective commit rate, presuming the records are small enough that
true disk throughput doesn't become the limiting factor. It's possible to run exactly
such a test using the pgbench tool shipped with PostgreSQL. You should be able to
write your own similar test in any programming language you're familiar with, that
can issue PostgreSQL INSERT statements one at a time. Just make sure you don't
batch them into a larger transaction block. That's the right approach if you actually
want good performance, but not for specifically testing the commit rate using
small transactions.

Windows commit rate
On the Windows platform, where sysbench and test_fsync will not be available,
an INSERT test is really the only good option for testing commit rate. Note that the
PostgreSQL wal_sync_method, covered in a later chapter, needs to be set properly
for this test to give valid results. Like most platforms, the Windows defaults will
include unsafe write-back cache behavior.

Disk benchmarking tools
Now it's time to see some real disks measured. For the first few examples here,
the drive being tested is a 320 GB Seagate Momentus 7200.4 3 Gb/s SATA, model
number ST9320423AS. This is one of the faster 2.5" laptop drives on the market, and
its more detailed access time specifications were given in the IOPS section before.
The results shown are from an installation into a Lenovo Thinkpad T60 with an Intel
Core 2 Duo T7200 running at 2.0 GHz.

Chapter 3

[51]

We'll start with the hdtune program running on Windows, because its graphs
are extremely nice and it measures almost everything you'd hope for. Its graphs
demonstrate several aspects of general disk performance more clearly than the
command line tools for UNIX systems covered later.

hdtune
A great tool for the sort of basic disk benchmarking needed for databases on
Windows system is hdtune, available at http://www.hdtune.com/ The program is
free for a trial period, with a slightly limited feature set, and is modestly priced to
purchase. The free features are sufficient for database hardware validation.

Here is what the output from hdtune looks like running the basic transfer rate
benchmark on this disk:

These are respectable results from a single drive of any sort, particularly a laptop
one. The left axis and the upper line graph is charting MB/s at that point on the
disk. The right axis label is in milliseconds, and the scattered dots in the middle and
bottom are showing the access time along points in the drive. Note how transfer
speed falls and access speed rises as you move further along the logical part of this
disk, into the slower ZCAV zones.

Database Hardware Benchmarking

[52]

An average of 68.3 MB/s is in the middle range of what you'll see on drives as
this book is being written. High performance desktop SATA or SAS drives will do
better, some desktop and most laptop drives will do worse. The real-world seek
access time of 14.9 ms is a similarly average value, and you can see it matches the
drive specification.

There's one thing really odd about this graph though. Note how the early part, from
0 to 192 GB, is both flat on top and somewhat jagged. Both of those are warning
signs that something is wrong. If you look at the bonnie++ ZCAV results later,
you'll see what the drive's performance really looks like. The performance should
be dropping evenly from the very beginning, and the graph should be smoother.
When you see a flat top where a ZCAV decline should be, normally that means the
rate is being limited by some bottleneck other than the drive speed itself. This sort of
issue is exactly why it's worthwhile to get familiar with what drives look like when
performing well, so you can spot the ones that aren't.

Short stroking tests
hdtune includes a particularly easy-to-use short stroking test feature that shows
you how performance would change if only using a portion of the disk. For our
sample, the first 160 GB were obviously the fastest parts, making that a reasonable
short-stroked restriction:

Chapter 3

[53]

You can see that not using the whole disk range using short stroking considerably
decreases worst-case seek time, which makes it particularly appropriate for
applications that are more concerned about worst-case latency than disk capacity.
And in some cases, you can discover SATA disks with very high capacities end up
being much closer in performance to more expensive SAS disks just by applying this
technique. For example, the first 100 GB of a 1 TB SATA drive is extremely fast, due
to how dense that information is on the drive. You might be surprised at how well it
compares with, say, a 143 GB SAS drive even with a higher rotation speed.

IOPS
hdtune includes a Random Access test that gives its results in terms of the standard
IOPS figure, at various block sizes:

This is not far from the computed value derived previously for this drive: 69.5 IOPS.

Database Hardware Benchmarking

[54]

The average speed computed number here (the poorly labeled "agv. speed" column)
is always a good one to note when doing seek-based tests. It's easiest to explain what
that means with a database specific example. Consider that PostgreSQL reads in
blocks of 8 KB each. Based on what we have seen, we could expect about 64 IOPS out
of this drive as its worst-case performance, doing nothing but random seeks, at that
block size. This turns into a total transfer rate of:

64 IO/S * 8KB/IO * (1 MB / 1024 KB) = 0.5MB/s

That's what "agv. speed" is showing: the computed transfer speed for various
block sizes.

This is the real world of disk performance. While you might think a disk is capable
of 60 Mb/s or more of transfers, on a truly random workload you might get 0.5 MB
or less. This is a laptop disk, but only seeing 1 to 2 MB/s on completely random tasks
is typical for desktop and server class drives too.

With enough practice, on a UNIX system it's even possible to stare at the output from
vmstat and iostat, see how busy the drives are and the actual read/write block
counts, and make a rough estimate of the seek vs. sequential workload breakdown
from those numbers. If the drives are always busy but only getting 0.5 MB/s, it
has to be almost all seek. If they're busy half the time and getting 30 MB/s, that's
probably a sequential read hitting a bottleneck on the processing side of things.

Unpredictable performance and Windows
Serious database administrators have a strong historical bias toward using
UNIX-like systems for their servers. The first examples here are using Windows
instead because the graphs produced are easier to read, and therefore better for
introducing the concepts of this section. But doing so reminded me why Windows
is not the preferred database hosting operating system of so many people.

Getting useful benchmark results requires the system be quiescent: free of other
programs running that would spoil the results of what is intended to be measured.
When booting into Windows Vista to generate these results, I discovered the
TrustedInstaller process was hogging a considerable amount of CPU and disk
resources. It turned out Windows Update had decided it was time to install the next
major Vista Service Pack; it was downloading pieces in the background, and pushing
me toward the upgrade at every opportunity. It was two hours later before I had
completed all the background activity it compelled me to take care of, and had an
idle system capable of running these tests.

Chapter 3

[55]

dd
dd is a standard UNIX utility that's capable of reading and writing blocks of data
very efficiently. To use it properly for disk testing of sequential read and write
throughput, you'll need to have it work with a file that's at least twice the size of
your total server RAM. That will be large enough that your system cannot possibly
cache all of the read and write operations in memory, which would significantly
inflate results. The preferable block size needed by dd is to use 8 KB blocks, to match
how the database is going to do sequential read and write operations. At that size, a
rough formula you can use to compute how many such blocks are needed to reach
twice your RAM size is as follows:

blocks = 250,000 * (gigabytes of RAM)

Once you know that number, the following simple commands will time writing out
a file large enough to not fit in the OS RAM cache, and then read the results back:

time sh -c "dd if=/dev/zero of=bigfile bs=8k count=blocks && sync"
time dd if=bigfile of=/dev/null bs=8k

As this will run for a while without displaying anything interesting, you can watch
vmstat or iostat during the test (in another terminal) to see what's happening.
vmstat's bi and bo (block in and out) numbers will match current read/write rate.
You should also note the CPU percentage required to reach the peak rate. Displayed
CPU percentages are often relative to the total CPU capacity of the system. So if you
have four CPUs, and you're seeing 25% overall CPU usage, that could be a single
CPU running at 100%.

Once the times are reported, you can then divide the file size in MB (=1024 * GB) by
the number of seconds of runtime, and get a MB/s write and read score.

Recent dd versions, on Linux at least, will report a MB/s value at the end of their
run. Note that the value reported will be a bit inflated, because dd will report it is
finished before the actual blocks are all flushed to disk. This is why the previous
recipe includes a sync at the end—this makes sure the time reported includes that
overhead. The raw transfer rate reported by dd will usually be a bit higher than
what you compute when taking this into account.

The dd numbers you'll see should closely match the bonnie++ block output/input
numbers, as demonstrated in the next section. If you intend to eventually run
bonnie++ there's little sense in performing this test too. Using dd is mainly helpful
for UNIX systems where you don't want to install anything just to test the disks
out, including ones that don't have the development tools to build additional
software installed.

Database Hardware Benchmarking

[56]

bonnie++
The standard program used to run a simple disk I/O benchmark on a UNIX-like
system is bonnie++. In its default configuration, it will create a file (or set of files)
twice as large as physical RAM in the server, to prevent the entire test from being
cached in RAM, then read that whole file back in again. The main virtue of the
program is that you can just run it from a directory on the volume you want to
test and it usually does the right thing without further input.

Here's a full example of downloading bonnie++, building it, running it, and getting
an HTML report from it:

$ wget http://www.coker.com.au/bonnie++/bonnie++-1.03e.tgz

$ tar xvfz bonnie++-1.03e.tgz

$ cd bonnie++-1.03e/

$./configure

$ make

$./bonnie++ -f -n 0 | tee `hostname`.bonnie

$ chmod +x ./bon_csv2html

$ cat `hostname`.bonnie | grep "," | ./bon_csv2html > `hostname`.htm

You'll want to do this on the disk you want to test, or to run the bonnie++ program
from where you compiled it while in a directory on the test disk. Note that the
program won't run as root. You'll need to make the directory you're running it
in owned by a regular user and then log in as that user before running it.

The preceding example runs the program with two command line options you will
likely want to always use:

-n 0: Skip file creation test
-f: Fast mode, skip per character I/O tests

Neither of those tests are very informative nowadays. What you really want are the
sequential block read and write numbers, as well as the seeks result.

You'll have two files come out of this. If you use the suggested file naming
convention shown in the example, a full set of results will be in a file named after
your hostname with the extension .bonnie. Without the fast mode enabled it looks
like the following (one run exactly as above will have less information), again from
our sample laptop disk:

Version 1.03e ------Sequential Output------ --Sequential Input- -
Random-
 -Char- -Block- -Rewrite- -Char- -Block- -Seeks-
Machine Size K/s %CP K/s %CP K/s %CP K/s %CP K/s %CP /s %CP
meddle 4G 44754 96 58386 24 30439 12 52637 97 71059 19 232.8 0

•

•

Chapter 3

[57]

The "Create" tests were deleted from the output shown above to save some space,
and the above reformatted a bit to fit better into the width of the page here. The
results will also be summarized in a list of comma-separated values that look like
the following:

meddle,4G,44754,96,58386,24,30439,12,52637,97,71059,19,232.8,0,16,1134
9,36,+++++,+++,+++++,+++,+++++,+++,+++++,+++,+++++,+++

The values showing up with + characters are tests that didn't produce useful output.
This comma delimited part can be sent through a program named bon_csv2html to
produce a HTML formatted version of the results, which is much easier to read. In
the preceding full example, that gets redirected to a file named after your host with
the extension .htm.

If you did happen to compute just by running the program with its default
parameters, you do want to ignore the per-character and create results, and
look at the block output/input ones instead.

The Random Seeks number reported by bonnie++ is not a simple read-only seek test.
Here's its actual description from the manual:

The test runs SeekProcCount processes (default 3) in parallel, doing a total of 8000
random seek reads to locations in the file. In 10% of cases, the block read is changed
and written back.

This actually makes it a mixed read/write test, which is really more useful for
something like a database simulation anyway. Note that the duration of this
test—8000 seeks—is short enough that powerful systems nowadays with large
caches can easily give inflated results here, at intermittent times. You might see
500 seeks/second on one run, followed by 2000/second on the next. It's important
to confirm the seek figure using additional tools that run longer.

bonnie++ 2.0
The preceding results were generated with bonnie++ 1.03e, the most recent version
from the stable release series at this point. If you have a terabyte or larger drive you'll
need 1.03e at a minimum to get useful results, the earlier 1.0 releases don't handle
that right. And currently development is nearly complete on an updated bonnie++
2.0. There are already plenty of systems where the V1 bonnie++ results aren't very
useful. Ideally you'd default to trying the snapshots of the experiment V2 releases
(currently at 1.96) and only fall back to the 1.0 series if that doesn't work for you, but
as described in the next section that may not always be practical. I normally end up
needing to use both.

Database Hardware Benchmarking

[58]

Here's a command line that works with V1.96 and provides a faster and more
accurate test than the earlier versions:
bonnie++ -f -n 0 -c 4

In addition to the flags described in the previous version, this turns on the following
new option; -c 4: concurrency, use four processes at once.

Tests here suggest very high values for concurrency fail to deliver any incremental
improvement, but going from one up to two, three, or four can improve results in
a multi-core system.

bonnie++ ZCAV
Just like hdtune, bonnie++ has a utility, a separate binary named zcav, that will
track transfer rate across the disk. It produces a simple text file you can save to a file:

./zcav -f/dev/sda > sda.zcav

You will probably need to run this program as root as it accesses the whole drive.
You can convert the program's output to a graph using the gnuplot software.

Unfortunately, results from zcav on the experimental branch using
version 1.96 haven't been usable in my own tests. I find myself needing to
drop back to the 1.03e version for zcav to work properly. Hopefully this
gets sorted out before the official version 2.0 is released.

There are some examples of zcav results on the bonnie++ site; here's the output
showing performance on the sample laptop used for all the examples so far:

Chapter 3

[59]

And this is the gnuplot script that produced it:

unset autoscale x
set autoscale xmax
unset autoscale y
set autoscale ymax
set xlabel "Position GB"
set ylabel "MB/s"
set key right bottom
set title "Seagate Momentus 7200.4 Laptop"
set terminal png
set output "laptop-zcav.png"
plot "laptop.zcav" title "7200RPM Laptop ST9320423AS Max/Min=92/49"

The zcav software didn't produce any of the max/min data or titles shown on that
graph, those were all manually edited to make a nicer graph after extracting the
values from the raw text file. This is an example of how the Linux tools can give the
same quality of basic results as something like hdtune, but you have to put a bit
more work into it.

There is one positive aspect to this extra work: the bottleneck on the early part of the
disk seen on the Windows hdtune results isn't there. Performance peaks at 92 MB/s
and falls slowly and steadily through all the transfer zones on the disk in the classic
ZCAV pattern. Now that you see exactly what this sort of graph is supposed to look
like, if you revisit the hdtune once again it should be obvious why I immediately
suspected a problem when seeing it—the shape just wasn't right. This is exactly
the same system, just booted into Ubuntu Linux instead of Windows Vista. That
strongly suggests that whatever was limiting the Windows transfer rate to 78 MB/s,
and therefore flattening the left side of the hdtune graph, was just some sort of Vista
software problem.

This particular issue, noticing that something might be wrong with the disk
configuration just because it didn't look right compared to similar hardware seen in
the past, is exactly why it's worthwhile even for database administrators to become
familiar with hardware benchmarking basics. A more serious problem of this type
could easily throttle database performance, and without knowing it's the hardware
to blame much time could be wasted attacking that problem from the database side.

Database Hardware Benchmarking

[60]

sysbench
While initially targeted as a MySQL tool, the sysbench program available from
http://sysbench.sourceforge.net/ is also valuable for testing low-level aspects
of performance that impact databases, ones that apply equally well to PostgreSQL. It
even supports running read-only tests against PostgreSQL databases, too, a feature
not demonstrated here. The use in this chapter is just for its low-level hardware tests.

These specific sysbench tests should be considered secondary to the
ones already shown. If you have confirmed sequential read, writes, and
seek speeds are good with bonnie++, and know commit rates are good
from doing INSERT tests with PostgreSQL, you really don't need this
data too. It's mainly useful as an alternate way to do more thorough and
specific seek and commit rate tests, and is not recommended as your
primary testing tool.

Here's an example of downloading and compiling sysbench without support for any
database, the only way it will be used here:

$ wget http://sourceforge.net/projects/sysbench/files/sysbench/0.4.10/
sysbench-0.4.10.tar.gz/download

$ tar xvfz sysbench-0.4.10.tar.gz

$ cd sysbench-0.4.10/

$./configure --without-mysql

$ make

$ sysbench/sysbench --test=cpu run

This shows an example of running the simplest test available, the one for CPU speed.
The results that test gives are not very useful for comparing modern processors, but
it does confirm the program is working quickly.

The choice of sysbench-0.4.10 instead of the latest version available
right now (0.4.12) is deliberate. Changes made since 0.4.10 have
introduced compilation issues on several platforms, and the software isn't
very well maintained in that regard. You may discover that it takes more
work on the configure and make steps to build sysbench for your
system than shown here.

Once you've compiled the program, you don't even need to install it onto your
system. It will run fine from a local build in your home directory.

Chapter 3

[61]

Seek rate
Unlike the rest of the tests sysbench is used for in this chapter, the seek rate test
requires a 3-step process where test files are created, the test is run, and then those
files are cleaned up. You also have options for how many threads to keep active,
how large the file should be, and what read/write mode to use. The following
script shows how to run a seek test with the most commonly changed portions
as environment variables:

#!/bin/sh
PREFIX="$HOME/sysbench-0.4.10"
THREADS=1
GBSIZE=4
MODE=rndrd
$PREFIX/sysbench/sysbench --test=fileio --num-threads=$THREADS --file-
num=$GBSIZE --file-total-size=${GBSIZE}G --file-block-size=8K --file-
test-mode=rndrd --file-fsync-freq=0 --file-fsync-end=no prepare
$PREFIX/sysbench/sysbench --test=fileio --num-threads=$THREADS --file-
num=$GBSIZE --file-total-size=${GBSIZE}G --file-block-size=8K --file-
test-mode=rndrd --file-fsync-freq=0 --file-fsync-end=no run --max-
time=60
$PREFIX/sysbench/sysbench --test=fileio --num-threads=$THREADS --file-
num=$GBSIZE --file-total-size=${GBSIZE}G --file-block-size=8K --file-
test-mode=rndrd --file-fsync-freq=0 --file-fsync-end=no cleanup

Unlike the bonnie++ seek test which aimed at just twice your total RAM by default,
you can easily make this test span a large portion of the disk instead. Any seek
results should always include what portion of the disk the seeking took place over.
To get useful results from larger disks, you might want to use hundreds of GB worth
of data on this test, instead of just the 2 * RAM that bonnie++ uses for its seek testing.

fsync commit rate
It's possible to use sysbench to measure how fast commits can be flushed to disk,
using the standard fsync call just like the database defaults to. Note that in this case,
the file size being used is 16384 bytes, even though PostgreSQL block writes are
8192 bytes. The version tested here didn't work correctly with the block size reduced
that far, and as the actual amount of bytes doesn't impact the commit rate until it
becomes much larger anyway that's not worth worrying about. Below is a Linux
specific script that includes disabling then re-enabling the drive's write cache; the
basic sysbench call can be used on any platform that program runs on however:

#!/bin/sh
DRIVE="/dev/sda"
PREFIX="$HOME/sysbench-0.4.10"
Disable write cache

Database Hardware Benchmarking

[62]

hdparm -W 0 $DRIVE
echo fsync with write cache disabled, look for "Requests/sec"
$PREFIX/sysbench/sysbench --test=fileio --file-fsync-freq=1 --file-
num=1 --file-total-size=16384 --file-test-mode=rndwr run
Enable write cache (returning it to the usual default)
hdparm -W 1 $DRIVE
echo fsync with write cache enabled, look for "Requests/sec"
$PREFIX/sysbench/sysbench --test=fileio --file-fsync-freq=1 --file-
num=1 --file-total-size=16384 --file-test-mode=rndwr run

On a standard 7200 RPM drive, spinning 120 times per second and therefore limited
to that as its maximum commit rate, the version with the write cache disabled would
look like this:

 104.81 Requests/sec executed

While the cached version will likely show thousands of commits per second.

Complicated disk benchmarks
There are many more complicated disk benchmark programs available:

iozone: http://www.iozone.org/ allows testing all sorts of disk scenarios.
fio: http://freshmeat.net/projects/fio/ lets you completely script
exactly what benchmark scenario you want to run. Many samples at http://
wiki.postgresql.org/wiki/HP_ProLiant_DL380_G5_Tuning_Guide.
pgiosim: http://pgfoundry.org/projects/pgiosim/ simulates very
specific types of PostgreSQL workloads.

There are a few issues that make all of these less useful than the tools covered here.
The first is that these are complicated tools to set up and interpret the results of.
Correspondingly, when you do find a problem, if it involves a hardware vendor
issue, there's no way they will trust or attempt to replicate things discovered via
these tests. dd, bonnie++, and hdtune are on their respective platforms known to be
simple, reliable, easy to interpret tools. If you can show your vendor a problem using
one of those tools, there's little they can do to wiggle out of that. Even sysbench is a
bit more complicated than you'd want to rely upon in a vendor dispute. Simplicity
and transparency with your vendor is much more important for doing basic database
performance testing than being able to test more complicated scenarios.

•

•

•

Chapter 3

[63]

And really, if your goal is eventually to tune a database application, tuning exercises
should primarily be done at that level anyway. Once you're sure the basic hardware
works as expected, move right onto database-level tests and see if tuning changes
have any impact. That's much more likely to find out the real issues that do and
don't matter than these complicated synthetic disk benchmarks.

Sample disk results
Here's a summary of what was measured for the laptop drive tested in detail
previously, as well as a desktop drive both alone and in a RAID array as a second
useful data point:

Disks Seq
Read

Seq
Write

bonnie++ seeks sysbench seeks Commits
per sec

Seagate 320GB
7200.4 Laptop

71 58 232 @ 4GB 194 @ 4GB 105 or 1048

WD160GB
7200RPM

59 54 177 @ 16GB 56 @ 100GB 10212

3X WD160GB
RAID0

125 119 371 @ 16GB 60 @ 100GB 10855

Note how all the seek-related information is reported here relative to the size of
the area being used to seek over. This is a good habit to adopt. Also note that in the
laptop rate, two commit rates are reported. The lower value is without the write
cache enabled (just under the rotation rate of 120 rotations/second), while the higher
one has it turned on—and therefore providing an unsafe, volatile write cache.

The other two samples use an Areca ARC-1210 controller with a 256 MB
battery-backed write cache, which is why the commit rate is so high yet still safe.
The hard drive shown is a 7200 RPM 160 GB Western Digital SATA drive, model
WD1600AAJS. The last configuration there includes three of that drive in a Linux
Software RAID0 stripe. Ideally, this would provide 3X as much performance as a
single drive. It might not look like this is quite the case from the bonnie++ read/
write results: those represent closer to a 2.1X speedup. But this is deceiving, and
once again it results from ZCAV issues.

Database Hardware Benchmarking

[64]

Using the bonnie++ zcav tool to plot speeds on both the single drive and RAID0
configurations, you get the following curves:

The derived figures from the raw data max and min transfer speed numbers are
almost exactly tripled as follows:

3 X 37=111MB theoretical min, actual is 110MB
3 X 77=231MB theoretical max, actual is 230MB

That's perfect scaling, exactly what you'd hope to see when adding more disks to a
RAID array. This wasn't clearly doing the right thing when only looking at average
performance, probably because the files created were not on exactly the same
portion of the disk to get a fair comparison. The reason why ZCAV issues have been
highlighted so many times in this chapter is because they pop up so often when you
attempt to do fair comparison benchmarks of disks.

•

•

Chapter 3

[65]

Disk performance expectations
So what are the reasonable expectations for how your disks should perform? The last
example shown demonstrates how things should work. Any good drive nowadays
should have sequential transfers of well over 50 MB/s on its fastest area, with 100
MB/s being easy to find. The slowest part of the drive will be closer to half that
speed. It's good practice to try and test an individual drive before building more
complicated arrays using them. If a single drive is slow, you can be sure an array
of them will be bad too.

The tricky part of estimating how fast your system should be is when you put
multiple drives into an array.

For multiple disks into a RAID1 array, the sequential read and write speed will not
increase. However, a good controller or software RAID implementation will use both
drives at once for seeking purposes, which might as much as double measurements
of that rate.

When multiple drives are added to a RAID0 array, you should get something close
to linear scaling of the speeds, as shown in the previous section. Two 50 MB/s drives
in RAID0 should be at least close to 100 MB/s. It won't be perfect in most cases, but it
should be considerably faster than a single drive.

Combinations like RAID10 should scale up sequential reads and writes based on
the number of drive pairs in RAID0 form, while also getting some seek improvement
from the RAID1 mirroring. This combination is one reason it's preferred for so many
database disk layouts.

If you're using RAID5 instead, which isn't recommended for most databases,
read speed will scale with the number of drives you use, while write speeds
won't increase.

Sources of slow disk and array performance
Most of the time, if you meet expectations for sequential read and write speeds,
your disk subsystem is doing well. You can measure seek time, but there's little
you can do to alter it besides add more disks. It's more a function of the underlying
individual physical drives than something you can do anything about. Most
problems you'll run into with slow disks will show up as slow read or write speeds.

Poor quality drivers for your controller can be a major source of slow performance.
Usually you'll need to connect the same drives to another controller to figure out
when this is the case. For example, if you have an SATA drive that's really slow
when connected to a RAID controller, but the same drive is fast connected directly
to the motherboard, bad drivers are a prime suspect.

Database Hardware Benchmarking

[66]

One problem that can significantly slow down read performance in particular is not
using sufficient read-ahead for your drives. This normally manifests itself as writes
being faster than reads, because the drive ends up idle too often while waiting for the
next read request to come in. This subject is discussed more in Chapter 4, Disk Setup.

Conversely, if writes are very slow relative to reads, check the write caching policy
and size on your controller if you have one. Some will prefer to allocate their cache
for reading instead of writing, which is normally the wrong decision for a database
system. Reads should be cached by your operating system and the database, it's rare
they will ask the controller for the same block more than once. Whereas it's quite
likely your OS will overflow the write cache on a controller by writing heavily to it.

RAID controller hardware itself can also be a bottleneck. This is most often the case
when you have a large number of drives connected, with the threshold for what
"large" means dependent on the speed of the controller. Normally to sort this out,
you'll have to reduce the size of the array temporarily, and see if speed drops. If
it's the same even with a smaller number of drives, you may be running into a
controller bottleneck.

The connection between your disks and the rest of the system can easily become a
bottleneck. This is most common with external storage arrays. While it might sound
good that you have a "gigabit link" to a networked array over Ethernet, a fairly
common NAS configuration, if you do the math that's at most 125MB/s—barely
enough to keep up with two drives, and possible to exceed with just one. No way
will that be enough for a large storage array. Even Fiber Channel arrays can run into
their speed limits and become the bottleneck for high sequential read speeds, if you
put enough disks into them. Make sure you do a sanity check on how fast your drive
interconnect is relative to the speed you're seeing.

It's also possible for a disk bottleneck to actually be somewhere on the CPU or
memory side of things. Sometimes disk controllers can use quite a bit of the total
system bus bandwidth. This isn't as much of a problem with modern PCI Express
controller cards that use the higher transfer rates available, but you do need to make
sure the card is placed in a slot and configured so it's taking advantage of those.
Monitoring overall system performance while running the test can help note when
this sort of problem is happening; it will sometimes manifest as an excessive amount
of CPU time being used during the disk testing.

Poor or excessive mapping of your physical disk to how the operating system sees
them can also slow down results by more than you might expect. For example,
passing through Linux's LVM layer can cause a 10-20% speed loss, compared to
just using a simple partition instead. Other logical volume abstractions, either in
hardware or software, can drop your performance too.

Chapter 3

[67]

One performance aspect that is overrated by storage vendors in particular is aligning
file system blocks with those of blocks on physical storage, or with the "stripes" of
some RAID array configurations. While theoretically such a misalignment can turn
a single physical block write into two when blocks straddle a stripe boundary, you'll
really need to have quite a system before this is going to turn into your biggest
problem. For example, when doing random database writes, once the disk has done
a seek to somewhere it makes little difference whether it writes one or two blocks
once it arrives. By far the biggest overhead was the travel to the write location, not
the time spent writing once it got there. And since it's easy to have your bottlenecks
actually show up at the block level in the OS or controller, where strip splits aren't
even noticed, that makes this problem even less likely to come up. Alignment is
something worth investigating if you're trying to get good performance out of
RAID5, which is particularly sensitive to this problem. But for most systems using
the better performing RAID levels, trying to tune here is more trouble than it's worth.
Don't be surprised if a storage vendor, particular one defending an underperforming
SAN, tries to blame the performance issues on this area though. You'll likely have
to humor them by doing the alignment just to rule that out, but don't expect that to
change your database performance very much.

The length of this list should give you an idea why doing your own testing is so
important. It should strike you that there are a whole lot of points where a disk
configuration can go wrong in a way that slows performance down. Even the most
competent vendor or system administrator can easily make a mistake in any one of
theses spots that cripples your system's disk speed, and correspondingly how fast
the database running it will get work done. Would you believe that even excessive
vibration is enough to considerably slow down a drive nowadays? It's true!

Summary
Doing your own hardware benchmarking serves two complementary purposes.
Knowing how fast your current systems are relative to one another, and being able
to evaluate a candidate new server via the same measurements, is extremely valuable
for helping nail down where the bottlenecks in your hardware are.

Second, the difference between reality and your hardware vendor's claims or
reputation can be quite large. It is not safe to assume that your system is fast because
you bought it from a reputable vendor. You should not assume a SAN is properly
configured when delivered simply because it's a very expensive item and you
were told it's already optimized for you. Systems are complicated, odd hardware
interactions are inevitable, and not everyone involved in sales is going to be
completely honest with you.

Database Hardware Benchmarking

[68]

At the same time, you don't need to be a benchmarking expert to do useful hardware
validation tests. It's actually counterproductive to run really complicated tests. If
they don't give expected results, it will be hard to get your vendor to acknowledge
the result and replicate the issue where it can be resolved. It's better to stick with the
simplest possible, industry-standard tests for benchmarking, rather than attempt to
do really complicated ones. If it takes a complicated test requiring hours of custom
application set up to show a performance problem, the odds your vendor is going to
help resolve that issue are low. Much more likely, your application will be blamed.
If on the other hand, you can easily replicate the problem using the UNIX standard
dd command in a few minutes, it's difficult to refute that the lowest levels of
hardware/software are to blame.

Finally, doing some heavy benchmarking work when a new server arrives will do
one additional thing: put some early stress on the hardware while it's still new. It's
always better to deploy a system that's already gotten a workout to prove itself.

Always run your own basic hardware benchmarks on any system you intend
to put a database on.
Simpler tests your vendor can replicate if you run into a problem are better
than complicated ones.
memtest86+, STREAM, sysbench, hdtune, dd, bonnie++, and sysbench are all
useful tools for measuring various aspects of system performance.
Disk drive testing needs to be very sensitive of how disk speed changes over
the surface of the drive.
IOPS is a common way to measure disk and disk array performance, but it's
not very well matched to the requirements of database applications.
Speeds on a seek-heavy workload can be much slower than you might expect
based on a disk's sequential read/write performance.
Commit rate needs to be measured to confirm the caching levels you believe
are active really are, since that impacts database reliability.
Complicated tests are better done using benchmarks of real database
applications, rather than focusing on synthetic disk tests.

•

•

•

•

•

•

•

•

Disk Setup
Most operating systems include multiple options for the filesystem used to store
information onto the disk. Choosing between these options can be difficult, because
it normally involves some tricky speed vs. reliability trade-offs. Similarly, how to
set up your database to spread its components across many available disks also has
trade-offs, with speed, reliability, and available disk space all linked. PostgreSQL has
some facilities to split its database information over multiple disks, but the optimal
way to do that is very much application dependent.

Maximum filesystem sizes
One of the topics discussed for each filesystem is how large of a volume can you
put on it. For most of them, that number is 16 TB, a shared artifact of using 32 bit
numbers to represent filesystem information. Right now, it's quite easy to exceed
16 TB in a volume created with a moderately sized array of terabyte or larger hard
drives. This makes this number an increasingly problematic limit.

There are three levels of issues you can run into here:

1. The data structures of the filesystem itself don't support large volumes.
2. Tools used to create and manipulate the filesystem do not handle large sizes.
3. The disk partitioning scheme needed to boot the operating system doesn't

handle large volumes.

The last of those is worth spending a moment on, since that problem is mostly
independent of the filesystem specific details of the first two.

Disk Setup

[70]

Most PC hardware on the market, with the notable exception of Apple Intel Mac
OS X systems, partition drives using the Master Boot Record (MBR) partitioning
scheme. This only supports partition sizes up to 2 TB in size. Creating a larger
partition that you can boot from, will require a different partitioning scheme. One
possibility is the GUID Partition Table (GPT) scheme, promoted by Intel as a part
of their Extensible Firmware Interface (EFI) standard intended to replace the old PC
BIOS booting methods. Apple is so far the main early adopter of EFI and GPT. See
http://en.wikipedia.org/wiki/GUID_Partition_Table for more information
about GPT partitions, their support in various operating systems, and the backward
compatibility possibilities available.

This area is not very well explored or supported yet. Proceed with caution if you
expect to need greater than 2TB volumes on the PC hardware, even if your chosen
filesystem obviously supports it. At a minimum, expect that you may need to have a
smaller operating system disk that you boot off, only using GPT partitioning on the
data disks mounted after the OS has started.

Filesystem crash recovery
Filesystem writes have two major components to them. At the bottom level, you are
writing out blocks of data to the disk. In addition, there is some amount of filesystem
metadata involved too. Examples of metadata include the directory tree, the list of
blocks and attributes associated with each file, and the list of what blocks on disk
are free.

Like many disk-oriented activities, filesystems have a very clear performance vs.
reliability trade-off they need to make. The usual reliability concern is what happens
in the situation where you're writing changes to a file and the power goes out in
the middle.

Consider the case where you're writing out a new block to a file, one that makes
the file bigger (rather than overwriting an existing block). You might do that in
the following order:

1. Write data block.
2. Write file metadata referencing use of that block.
3. Add data block to the list of used space metadata.

Chapter 4

[71]

What happens if power goes out between steps 2 and 3 here? You now have a block
that is used for something, but the filesystem believes it's still free. The next process
that allocates a block for something is going to get that block, and now two files
would refer to it. That's an example of a bad order of operations that no sensible
filesystem design would use. Instead, a good filesystem design would:

1. Add data block to the list of used space metadata.
2. Write data block.
3. Write file metadata referencing use of that block.

If there was a crash between 1 and 2 here, it's possible to identify the blocks that were
marked as used, but not actually written to use fully yet. Simple filesystem designs
do that by iterating over all the disk blocks allocated, reconciling the list of blocks
that should be used or free against what's actually used. Examples of this include the
fsck program used to validate simple UNIX filesystems and the chkdsk program
used on FAT32 and NTFS volumes under Windows.

Journaling filesystems
The more modern approach is to use what's called a journal to improve this
situation. A fully journaled write would look like this:

1. Write transaction start metadata to the journal.
2. Write used space metadata change to the journal.
3. Write data block change to the journal.
4. Write file metadata change to the journal.
5. Add data block to the list of used space metadata.
6. Write data block.
7. Write file metadata referencing use of that block.
8. Write transaction end metadata to the journal.

What this gets you is the ability to recover from any sort of crash the filesystem
might encounter. If you didn't reach the final step here for a given write transaction,
the filesystem can just either ignore (data block write) or undo (metadata write) any
partially completed work that's part of that transaction. This lets you avoid long
filesystem consistency checks after a crash, because you'll just need to replay any
open journal entries to fix all the filesystem metadata. The time needed to do this
is proportional to the size of the journal, rather than the old filesystem checking
routines whose runtime is proportional to the size of the volume.

Disk Setup

[72]

The first thing that should jump out at you here is that you're writing everything
twice, plus the additional transaction metadata, and therefore more than double
the total writes per update in this situation.

The second thing to note is more subtle. Journaling in the filesystem is nearly
identical to how write-ahead logging works to protect database writes in
PostgreSQL. So if you're using journaling for the database, you're paying this
overhead four times. Writes to the WAL, itself a journal, are journaled, and then
writes to the disk are journaled too.

Since the overhead of full journaling is so high, few filesystems use it. Instead, the
common situation is that only metadata writes are journaled, not the data block
changes. This meshes well with PostgreSQL, where the database protects against
data block issues but not filesystem metadata issues.

Linux filesystems
Linux is a particularly good example to start with for discussing filesystem
implementation trade-offs, because it provides all of the common options
among its many available filesystems.

ext2
The oldest Linux filesystem still viable for use now—ext2, does not have any
journaling available. Therefore, any system that uses it is vulnerable to long fsck
recovery times after a crash, which makes it unsuitable for many purposes. You
should not put a database volume on ext2. While that might work theoretically,
there are many known situations, such as any user error made during the quite
complicated fsck process, this can break the write ordering guarantees expected
by the database.

Because not journaling any writes is faster, ext2 volumes are used sometimes for
PostgreSQL WAL volumes, which require very little in the way of data guarantees.
Also, WAL volumes tend to be small filesystems without many files on them, and
thus fairly quick to run fsck on. However, this does introduce the likely possibility
of a failing automatic fsck check on reboot after a crash. This requires user
intervention, and therefore, will make the server fail to start fully.

Chapter 4

[73]

Rather than presuming that you need to start with ext2, a sensible approach is to
start with standard ext3, switch to writeback ext3 if the WAL disk is not keeping up
with its load, and only if that too continues to lag behind consider dropping to ext2.
Since the WAL writes are sequential, while ones to the database are often random, it's
much harder than you might think to have the WAL be a bottleneck on your system,
presuming you've first put it into its own disk(s). Therefore, using ext2 without
proving it is necessary falls into the category of premature optimization—there is a
downside and you should only expose yourself to it when needed. Only if the WAL
is a measured bottleneck should you consider the faster but riskier ext2.

ext3
ext3 adds a journal kept in a regular file on top of the ext2 filesystem. If the journal
is empty (which will be the case on a clean server shutdown), you can even open an
ext3 filesystem in ext2 mode. It's backward compatible with ext2, and it's possible
to convert a volume in either direction: ext2 to ext3 or ext3 to ext2.

There are three levels of journaling available in ext3, specified as options when
mounting the filesystem:

data=writeback: Data changes are not journaled at all. Metadata changes
are journaled, but the order in which they are written relative to the data
blocks is not guaranteed. After a crash, files can have extra junk at their end
from partially completed writes, and you might have a mix of old and new
file data.
data=ordered: Metadata is journaled, but data changes are not. However, in
all cases the metadata writes only occur after the associated data has already
been written—thus the name "ordered". After a crash, it is possible to get a
mix of old and new data in the file, as in the writeback mode, but you'll never
end up with a file of incorrect length. The main differences in the behavior
here compared to fully journaled writes are when you're changing blocks
already on disk, when there is a data change but no associated metadata
change. In cases where the file is new or the block being written is at the end,
expanding the size of the file, the behavior of ordered mode is functionally
equivalent to journal.
data=journal: Both file data and filesystem metadata are written to the
journal before the main filesystem is touched.

•

•

•

Disk Setup

[74]

Choosing between these three isn't as easy as it might appear at first. You might
think that writeback mode is the fastest mode here in all cases. That's true, but on
systems with a functional write cache in particular the difference between it and
ordered is likely to be quite tiny. There is little reason to prefer writeback from a
performance perspective when your underlying disk hardware is good, which makes
the exposure to risk even less acceptable. Amusingly, the usual situation in which
the writeback mode is said to be safe for PostgreSQL use is one where the underlying
writes involve a battery-backed write cache, but that's exactly the situation under
which the penalty of ordered mode is the least expensive.

In short, there are very few reasons to ever use writeback for your main database.
The main weakness of writeback mode—that files can sometimes be extended with
garbage bytes—is not an issue for the WAL files. Those are both extended to their
full size before use and written to with checksumming that rejects incorrect data.
Accordingly, writeback is an appropriate mode to consider for a filesystem that only
holds WAL data. When pressed for speed improvements on WAL writes, writeback
is preferred to using ext2 from an integrity point of view, because the minimal
metadata journaling you will get in this mode will prevent long fsck recovery
time after a crash.

For the database disks, the choices are ordered or journal. On simple benchmarks
such as bonnie++ (more on this in the XFS section later), ordered will sometimes
lose as much as half its throughput (relative to raw disk speed) because of the
double writing that the journal introduces. However, that does not mean journal
will be half as fast for your database writes! Like the WAL, the journal is written
out to a contiguous portion of disk, making it mostly sequential writes, and the
subsequent updates to the data blocks are then written later. It turns out that this
behavior makes the journal model particularly well suited to the situation where
there are concurrent reads mixed with writes—which is exactly the case with many
database applications. In short, journal should not be immediately discarded as
an option just because it delivers poor results in synthetic workloads. If you can
assemble a reasonable simulation of your application running, including realistic
multi-user behavior, it's worth trying the journal mode in addition to ordered. You
shouldn't start there though, because in simpler workloads ordered will be faster,
and the additional integrity provided by journal mode is completely optional for
a PostgreSQL database.

Note that switching to a different mode for your root filesystem isn't as easy as
changing the mount options in the /etc/fstab file. Instead you'll need to edit the
bootloader (typically grub) configuration file and add the change as a kernel option
like the following:

rootflags=data=journal

Chapter 4

[75]

Because the root drive is mounted before, even the fstab file is consulted.

One of the limitations of ext3 that is increasingly relevant with today's hard drive
sizes is that on common Intel and AMD processors, an ext3 filesystem can only be
16 TB in size, and individual files are limited to 2 TB.

ext4
The evolutionary replacement for ext3, ext4 was announced as production quality as
of Linux kernel 2.6.28. A variety of fixes involving delayed allocation were applied
between that and version 2.6.30, but more importantly for PostgreSQL some bugs
involving fsync handling were not fully corrected until kernel 2.6.31.8/2.6.32.1.
Kernel 2.6.32 is the first version that includes an ext4 version that should be
considered for a production PostgreSQL database. This is the version that both
RHEL 6 and Ubuntu 10.04 are using, in the first long-term release from each that
includes ext4 support.

The 16 TB filesystem limit of ext3 theoretically does not exist for ext4, but as this is
being written the associated mkfs utility is still stuck at that limit. The ext4 Howto at
https://ext4.wiki.kernel.org/index.php/Ext4_Howto is the definitive source
for updates about progress in removing that limitation.

From the perspective of PostgreSQL, the main improvement of ext4 over ext3 is
its better handling of write barriers and fsync operations. See the section about
Write barriers in a while for more information.

XFS
Unlike ext3, XFS was designed by SGI for efficiently journaling from its beginning,
rather than having journaling added on to an existing filesystem. As you might
predict, the result is a bit faster than ext3, some of which is just from better efficiency
in the journal implementation. However, part of this speed results from the fact that
XFS only journals metadata, and it doesn't even have an option to try and order the
data vs. metadata writes. Accordingly, XFS is most like ext3's writeback mode. One
critical difference is that in situations where garbage blocks may have been written
to a file, the main concern with ext3 writeback, the journal playback in XFS will
instead zero out these entries. Then they are unlikely to be interpreted as real data
by an application. This is sufficient to keep PostgreSQL from being confused if it
tries to read them, as a zeroed block won't have the right header to look like either a
WAL block or a database data block. Some consider this a major flaw of XFS, that it
took what could have been a perfectly good copy of a block and erased it. The way
PostgreSQL does its writes, such damage will be sorted out by the WAL. Just make
sure you have the full_page_writes configuration parameter turned on.

Disk Setup

[76]

How much faster is XFS? Running a simple test comparing ext3 in two of its
modes vs. XFS, it does quite a bit better. The following table shows some simple
bonnie++ 1.96 results, which are not indicative of the performance difference you'll
see on general database applications. The results show the range appearing in three
runs against a single SATA drive:

Filesystem Sequential write (MB/s) Sequential read (MB/s)
ext3 data=ordered 39-58 44-72
ext3 data=journal 25-30 49-67
XFS 68-72 72-77

It's clear that raw XFS performance has less variation than these two ext3 modes,
and that its write performance is much faster. The writeback mode of ext3 wasn't
included because it's not safe, due to its tendency to add non-zero garbage blocks
to your files after a crash.

On systems with larger disk arrays, the delayed allocation feature of XFS, and
its associated I/O scheduling, are aimed to provide larger writes that are likely
better aligned with RAID stripe sizes. Combine delayed allocation with a generally
more efficient design, and XFS's performance advantage over ext3 can really look
compelling on huge volumes. To further improve performance on larger systems,
there are several options available for adjusting XFS memory use for things such as
the in-memory size of the metadata journal, as well as what its target pre-allocation
size should be.

XFS has historically not been popular among Linux users or distributors. However,
XFS easily handles files of over a million terabytes, making it the primary Linux
solution currently available for files greater than 16 TB. This has resulted in XFS
having a comeback of sorts in recent enterprise-oriented Linux distributions, where
that file limit is one that administrators are increasingly likely to run into. Recently
RedHat's RHEL 5.4 release added preliminary XFS support specifically to address
that need, and their RHEL 6 release treats it as a fully supported filesystem on par
with ext3 and ext4.

Since it defaults to using write barriers (described in more detail later), XFS is also
paranoid about drives with volatile write caches losing writes. To prevent that, it
is aggressive in sending drive cache flush commands to the underlying disks. This
is what you want from a PostgreSQL database running on XFS using regular hard
drives that have their write cache turned on. However, if you have a non-volatile
write cache, such as a battery-backed write controller, this cache flushing is wasteful.
In that case, it's recommended to use the nobarrier option when mounting the XFS
filesystem in order to disable its cache flushing.

Chapter 4

[77]

Other Linux filesystems
There are a few other filesystem options for Linux that are not well explored for
PostgreSQL, some recommendations are as follows:

JFS: Performs similar to XFS but with less CPU usage. But it is considered less
stable than the recommended choices here. It's also not as well supported by
mainstream Linux distributors. It's hard to tell the ordering there—is it less
stable merely because it's not a mainstream choice and gets less testing as a
result, or are there fewer users because of the stability issues? Regardless, JFS
was never very popular, and it seems to be losing ground now.
ReiserFS: After starting as the first journaling filesystem integrated into
the Linux kernel, for some time ReiserFS was the preferred filesystem for
major Linux distribution SuSE. Since SuSE abandoned it in late 2006 for
ext3, ReiserFS adoption has been shrinking steadily since. At this moment
the current ReiserFS v3 is considered stable, but its replacement ReiserFS
v4 has yet to even be merged with the mainline Linux kernel. The uncertain
future of the filesystem limits interest in it considerably. This is unfortunate
given that the transparent compression feature of ReiserFS v4 would be
particularly valuable for some database workloads, such as data warehouses
where large sequential scans are common.
Btrfs: This Oracle sponsored filesystem is considered the future of Linux
filesystems even by the primary author of ext4. At this point the code
development hasn't reached a stable release. In the future time, when this
does happen, this filesystem has some unique features that will make it a
compelling option to consider for database use, such as its support for easy
snapshots and checksums.

While each of these filesystems has some recognized use cases where they perform
well compared to the other mainstream choices, none of these are considered
compelling for database use in general, nor in PostgreSQL, due to the maturity
issues as this is being written. Btrfs in particular may change in that regard, as
unlike the other two it has a healthy development community working on it still.

Write barriers
Chapter 2, Database Hardware already mentioned that most hard drives have volatile
write caches in them, and that the WAL writing scheme used by the database isn't
compatible with those. The important requirement here is that when a file sync
operation (fsync on UNIX) occurs, the filesystem must make sure all related data is
written out to a non-volatile cache or disk itself. Filesystem journal metadata writes
have a similar requirement. The writes for the metadata updates require that the
journal updates are first written out to preserve proper ordering.

•

•

•

Disk Setup

[78]

To support both of these situations, where something needs to be unconditionally
written to the disk and to where an ordering is required, the Linux kernel implements
what they call write barriers. A quote from the kernel documentation on barriers:

All requests queued before a barrier request must be finished (made it to the
physical medium) before the barrier request is started, and all requests queued after
the barrier request must be started only after the barrier request is finished (again,
made it to the physical medium).

This sounds comforting, because this requirement that data be on "physical medium"
matches what the database expects. If each database sync request turns into a write
barrier, that's an acceptable way to implement what the database requires—presuming
that write barriers work as advertised.

Drive support for barriers
In order to support barriers, the underlying disk device must support flushing its
cache, and preferably a write-through mode as well.

SCSI/SAS drives allow writes (and reads) to specify Force Unit Access (FUA), which
directly accesses the disk media without using the cache—what's commonly called
write-through. They also support a SYNCHRONIZE CACHE call that flushes the
entire write cache out to disk.

Early IDE drives implemented a FLUSH CACHE call and were limited to 137 GB
in size. The ATA-6 specification added support for larger drives at the same time it
introduced the now mandatory FLUSH CACHE EXT call. That's the command you
send to a drive that does what filesystems (and the database) want for write cache
flushing currently. Any SATA drive in the market now will handle this call just fine;
some IDE and the occasional rare early SATA drives available many years ago did
not. Today, if you tell a drive to flush its cache out, you can expect it will do
so reliably.

SATA drives that support Native Command Queuing also can handle FUA. Note
that support for NCQ in Linux was added as part of the switch to the libata driver in
kernel 2.6.19, but some distributions (such as RedHat) have back ported this change
to their version of the earlier kernels they ship. You can tell if you're using libata
either by noting that your SATA drives are named starting with sda, or by running:

$ dmesg | grep libata

The exact system calls used will differ a bit, but the effective behavior is that any
modern drive should support the cache flushing commands needed for the barriers
to work. And Linux tests the drives out to confirm that this is the case before letting
you enable barriers, so if they're on, they are expected to work.

Chapter 4

[79]

Filesystem support for barriers
ext3 theoretically supports barriers when used with simple volumes. In practice, and
for database purposes, they are not functional enough to help. The problem is that
fsync calls are not correctly translated into write barrier in a form what will always
flush the drive's cache. It's just not something built into ext3 in the right form, and
if you are using Linux software RAID or the Logical Volume Manager (LVM) with
ext3, barriers will not be available at all anyway.

What actually happens on ext3 when you execute fsync is that all buffered data on
that filesystem gets flushed out in order to satisfy that call. You read that right—all
cached data goes out every time a fsync occurs. This is another reason why putting
the WAL, which is constantly receiving fsync calls, onto its own volume is so
valuable with ext3.

XFS does handle write barriers correctly, and they're turned on by default. When you
execute a fsync call against a file on an XFS volume, it will just write out the data
needed for that one file, rather than the excessive cache flushing that ext3 does. In fact,
one of the reasons this filesystem has a bad reputation in some circles relates to how
early it introduced this feature. It enabled barriers before either the drives available
or the underlying device drivers always did the right thing to flush data out, which
meant the barriers it relied upon for data integrity were not themselves reliable.
This resulted in reports of XFS causing corruption, caused by bugs elsewhere in the
software or hardware chain, but XFS was blamed for them. ext4 also supports barriers,
and they're turned on by default. And fsync calls are implemented properly as well.
The end result is that you should be able to use ext4, leave drive caching on, and expect
that database writes will be written out safely anyway. Amusingly, it was obvious that
ext4 was finally doing the right thing in 2.6.32 because of the massive performance
drop in PostgreSQL benchmarks. Suddenly, pgbench tests only committed a number
of transactions per second that corresponded to the rotation speed of the underlying
disks, rather than showing an inflated result from unsafe behavior.

General Linux filesystem tuning
Regardless of what filesystem you choose, there are some general Linux tuning
operations that apply.

Read-ahead
The first parameter you should tune on any Linux installation is device read-ahead.
When doing sequential reads that seem to be moving forward, this feature results in
Linux asking for blocks from the disk ahead of the application requesting them.

Disk Setup

[80]

This is the key to reaching full read performance from today's faster drives. The
usual symptom of insufficient read-ahead is noting that write speed to a disk is
faster than its read speed. The impact is not subtle; proper read-ahead can easily
result in 100% or larger increase in sequential read performance. It is the most
effective filesystem adjustment to make on Linux, if you want to see benchmarks
like the bonnie++ read speed (covered in Chapter 3, Database Hardware Benchmarking)
jump upwards. This corresponds to a big increase in large sequential I/O operations
in PostgreSQL too, including sequential scans of tables and bulk operations like
COPY imports.

You can check your current read-ahead using the blockdev command:

$ blockdev --getra /dev/sda

The default is 256 for regular drives, and may be larger for software RAID devices.
The units here are normally 512 bytes, making the default value equal to 128 KB of
read-ahead. The normal properly tuned range on current hardware normally works
out to be 4096 to 16384, making the following change:

$ blockdev --setra 4096 /dev/sda

A reasonable starting point. If you run bonnie++ with a few read-ahead values,
you should see the sequential read numbers increase as you tune upwards,
eventually leveling off. Unfortunately, read-ahead needs to be set for each drive on
your system. It's usually handled by putting a blockdev adjustment for each device
in the rc.local boot script.

The Linux read-ahead implementation was developed with PostgreSQL as an initial
target, and it's unlikely you will discover increased read-ahead detuning smaller
reads as you might fear. The implementation is a bit smarter than that.

File access times
Each time you access a file in Linux, a file attribute called the file's last access time
(atime) is updated. This overhead turns into a steady stream of writes when you're
reading data, which is an unwelcomed overhead when working with a database.
You can disable this behavior by adding noatime to the volume mount options in
/etc/fstab, as in this example:

/dev/sda1 / ext3 noatime,errors=remount-ro 0 1

There are two additional levels of access time updates available in some Linux
kernels: nodiratime and relatime, both of which turn off a subset of the atime
updates. Both of these are redundant if you use the preferred noatime, which
disables them all.

Chapter 4

[81]

Read caching and swapping
Linux will try to use any extra RAM for caching the filesystem, and that's what
PostgreSQL would like it to do. When the system runs low on RAM, the kernel
has a decision to make. Rather than reducing the size of its buffer cache, instead
the OS might swap inactive disk pages out. How often to consider this behavior is
controlled by a tuneable named swappiness. You can check the current value on
your system (probably 60) by looking at /proc/sys/vm/swappiness and the easiest
way to make a permanent adjustment is to add a line to /etc/sysctl.conf like
the following:

vm.swappiness=0

A value of 0 prefers shrinking the filesystem cache rather than using swap, which is
the recommended behavior for getting predictable database performance. Though,
you might notice a small initial decrease in performance at high memory usage The
things that tend to be swapped out first are parts of the operating system that are
never used, and therefore never missed. So evicting them for buffer cache space is
the right move in that specific case. It's when you run so low on memory that more
things start getting swapped out that the problems show up. As is often the case,
optimizing for more predictable behavior (avoiding swap) might actually drop
performance for a some cases (items swapped weren't necessary). Tuning for
how to act when the system runs out of memory is not an easy process.

Related to this parameter is Linux's tendency to let processes allocate more
RAM than the system has, in hopes not all of it will actually be used. This Linux
overcommit behavior should be disabled on a PostgreSQL server by making this
change to the sysctl configuration:

vm.overcommit_memory=2

Both of these changes should be considered as part of setting up any Linux
PostgreSQL server. A good practice here is to bundle them in with increasing the
shared memory parameters to support larger values of shared_buffers, which
requires editing the same sysctl file.

Write cache sizing
On the write side of things, Linux handles writes to the disk using a daemon named
pdflush. It will spawn some number of pdflush processes (between two and eight)
to keep up with the amount of outstanding I/O. pdflush is not very aggressive about
writes, under the theory that if you wait longer to write things out you will optimize
total throughput. When you're writing a large data set, both write combining and
being able to sort writes across more data will lower average seeking around
while writing.

Disk Setup

[82]

The main driver for when things in the write cache are aggressively written out to
disk are two tuneable kernel parameters as follows:

/proc/sys/vm/dirty_background_ratio: Maximum percentage of active
RAM that can be filled with dirty pages before pdflush begins to write them.
/proc/sys/vm/dirty_ratio: Maximum percentage of total memory that
can be filled with dirty pages before processes are forced to write dirty
buffers themselves during their time slice, instead of being allowed to
do more writes. Note that all processes are blocked for writes when this
happens, not just the one that filled the write buffers. This can cause what is
perceived as an unfair behavior where one "write-hog" process can block all
I/O on the system.

The default here depends on your kernel version. In early 2.6 kernels, dirty_
background_ratio=10 and dirty_ratio=40. This means that a full 10% of RAM can
be dirty before pdflush really considers it important to work on clearing that backlog.
When combined with ext3, where any fsync write will force the entire write cache
out to disk, this is the recipe for a latency disaster on systems with large amounts of
RAM. You can monitor just exactly how much memory is queued in this fashion by
looking at /proc/meminfo and noting how large the value listed for "dirty" gets.

Recognizing these defaults were particularly bad, in Linux kernel 2.6.22 both values
were lowered considerably. You can tune an older kernel to use the new defaults like
the following:

echo 10 > /proc/sys/vm/dirty_ratio
echo 5 > /proc/sys/vm/dirty_background_ratio

And that's a common recipe to add to the /etc/rc.d/rc.local file on RHEL4/5
server installs in particular. Otherwise, the write stalls that happen when
dirty_ratio is exceeded can be brutal for system responsiveness. The effective
lower limit here is to set dirty_ratio to 2 and dirty_background_ratio to 1,
which is worth considering on systems with >8 GB of RAM. Note that changes here
will detune average throughput for applications that expect large amounts of write
caching. This trade-off, that maximum throughput only comes with an increase in
worst-case latency, is very common.

I/O scheduler elevator
One of the more controversial tunable Linux performance features, in that there's
no universally accepted guidelines available, is that of the I/O scheduler choice.
The name elevator is used due to how they sort incoming requests. Consider a real
elevator, currently at the first floor. Perhaps the first person in requests the ninth

•

•

Chapter 4

[83]

floor, then the next person the third. The elevator will not visit the floors in the order
requested; it will visit the third floor first, then continue to the ninth. The scheduler
elevator does read and write sorting to optimize in a similar fashion.

You can set the default scheduler elevator at kernel boot time. Here's an example
from a RedHat Linux system, changing the default elevator to the deadline option:

kernel /vmlinuz-2.6.18-128.el5 ro root=/dev/sda1 elevator=deadline

The exact location of the file where you have a similar kernel boot line depends
on your Linux distribution and which boot loader you use. There are too many
possibilities to list them all here; instructions for your Linux distribution on how
to install a custom kernel should point you the right way.

And as of Linux kernel 2.6.10, you can adjust the scheduler for individual devices
without rebooting:

$ echo cfq > /sys/block/sda/queue/scheduler

$ cat /sys/block/sda/queue/scheduler

noop anticipatory deadline [cfq]

The four elevator choices are:

elevator=cfq: Completely Fair Queuing tries to divide available
I/O bandwidth equally among all requests. This is the default for
most Linux installations.
elevator=deadline: Deadline aims to provide something like real-time
behavior, where requests are balanced so no one "starves" due to waiting
too long for a read or write.
elevator=noop: The no operation scheduler doesn't do any complicated
scheduling, it does handle basic block merging and sorting before passing
the request along to the underlying device.
elevator=as: Anticipatory scheduling intentionally delays I/O requests in
hopes of bundling more of them together in a batch.

People seem drawn to this area as one that will really impact the performance of
their system, based on the descriptions. The reality is that these are being covered
last because this is the least effective tunable mentioned in this section. Adjusting
the I/O scheduler in most cases has a minimal impact on PostgreSQL performance.
If you want to improve read performance, adjusting read-ahead is vastly more
important. And if you want to tweak write performance, adjusting the dirty cache
writeback behavior is the primary thing to consider (after tuning the database
to reduce how much dirty data it generates in the first place).

•

•

•

•

Disk Setup

[84]

There are a few cases where the I/O scheduler can be effective to tune. On systems
with a lot of device read and write cache, such as some RAID controllers and many
SANs, any kernel scheduling just gets in the way. The operating system is sorting
the data it knows about, but that's not considering what data is already sitting in the
controller or SAN cache. The noop scheduler, which just pushes data quickly toward
the hardware, can improve performance if your hardware has its own large cache
to worry about.

On desktop systems with little I/O capacity, the anticipatory schedule can be helpful
to make the most of the underlying disk(s), by better sorting read and write requests
into batches. It's unlikely to be suitable for a typical database server.

The other two options, CFQ and deadline, are impossible to suggest specific
use cases for. The reason for this is that the exact behavior depends on both the
Linux kernel you're using and the associated workload. There are kernel versions
where CFQ has terrible performance, and deadline is clearly better because of bugs
in the CFQ implementation in that version. In other situations, deadline will add
latency—exactly the opposite of what the people expect—when the system has a
high level of concurrency. And you're not going to be able to usefully compare them
with any simple benchmark. The main differences between CFQ and deadline only
show up when there are many concurrent read and write requests fighting for disk
time. Which is optimal is completely dependent on that mix.

Anyone who tells you that either CFQ or deadline is always the right choice doesn't
know what they're talking about. It's worth trying both when you have a reasonable
simulation of your application running, to see if there is a gross difference due to
something like a buggy kernel. Try to measure transaction latency, not just average
throughput, to maximize your odds of making the correct choice here. One way
to measure query latency is to just enable logging query times in the database
configuration, perhaps using log_min_duration statement, then analyzing the
resulting log files. But if the difference is difficult to measure, don't be surprised.
Without a compelling reason to choose otherwise, you should prefer CFQ, as it's
the kernel default and therefore much more widely tested.

Solaris and FreeBSD filesystems
While not identical, the common BSD heritage of Solaris and FreeBSD have their
respective filesystems much in common, and both implement the same basic ZFS code
as their current most advanced filesystem. Choosing between the older UFS options
and ZFS involves the usual performance and reliability tradeoffs found in so many
other disk related options. In general, ZFS is particularly good at handling very large
databases, while UFS can perform better on smaller ones. The feature sets are different
enough that this may not be the deciding factor for your installation though.

Chapter 4

[85]

Solaris UFS
The original Unix File System (UFS) implementation, also called the Berkley Fast File
System or UFS1, originated in BSD UNIX. It later appeared in several commercial
UNIX variations, including Solaris. The current Solaris UFS adds two major features
not found in the original UFS: support for larger files and filesystems (up to 16 TB)
and logging.

The logging here is again similar to the database write-ahead logging and the
journaling used in Linux, and like Linux's ext3 journal mode, there are known
situations where having logging on turns out to be a performance improvement
for UFS, because it turns what would otherwise be random writes into a series
of sequential ones to the log. Logging is turned on by default on current Solaris
releases, in ones before Solaris 9 (04/04) U6 it had to be specifically enabled by
adjusting filesystem options in /etc/vfstab to include it:

/dev/dsk/c0t0d0s1 /dev/rdsk/c0t0d0s1 / ufs 1 yes logging

In current versions where it's on by default, it can be disabled (which is not
recommended) by using the no_logging mount option.

UFS is not tuned very well out of the box for PostgreSQL use. One major issue is that
it only tries to cache small files, which means it won't do what the database expects
on the probably large database ones. And the maximum amount of RAM used for
caching is tiny—12% of SPARC systems and only 64 MB on Intel/AMD x64 systems.
Reads and writes are not done in particularly large blocks either, which can be a
problem for some workloads.

The last of those is the most straightforward to fix. When executing physical I/O,
requests are broken up into blocks no larger than the maxphys parameter. This also
serves as a limiter on read-ahead, and is therefore quite important to adjust upward.
Normal practice is to adjust this to match the maximum allowed by the typical
device drivers, 1MB. The klustsize works similar for reads and writes to swap.

$ set maxphys=1048576

$ set klustsize=1048576

The code that stops UFS from caching larger files in memory is named freebehind. For
PostgreSQL, you want this turned off altogether by setting it to 0, rather than trying to
tune its threshold. The total size of the UFS filesystem cache, called the segment map,
is set differently based on whether you're using a SPARC or x64 Solaris version.

On SPARC Solaris systems:

$ set freebehind=0

$ set segmap_percent=60

Disk Setup

[86]

This size (60% of total RAM) presumes you're setting shared_buffers to 25% of
total RAM and have a dedicated database server, so 85% of RAM is available for
effective database cache. You might want a smaller value on some systems.

On Intel/AMD x64 Solaris systems:

$ set ufs:freebehind=0

$ set segmapsize=1073741824

This example sets the cache size to 1 GB. You'll need to adjust this fixed value on
each server based on the amount of RAM in your server, rather than being able
to use a percentage.

Solaris systems allow turning off access time tracking using noatime as a mounting
option, similarly to Linux. This is a useful small optimization to enable.

A final Solaris specific option to consider with UFS relates to the WAL writes. Since
the WAL isn't read from except after a crash, any RAM used to cache it is wasted.
The normal way to bypass that, is to use UNIX direct I/O, which doesn't go through
the filesystem cache. But that isn't fully implemented in PostgreSQL on Solaris. If
you separate out the pg_xlog directory onto its own filesystem, you can mount that
using the forcedirectio option to get optimal behavior here. This will quietly
convert all the WAL writes to direct I/O that bypasses the OS cache.

FreeBSD UFS2
The FreeBSD community improved basic UFS in its own way, into what it calls UFS2.
This also expanded filesystem capacity to far beyond 2 TB, although there are still
some user tools that may not support this yet; be sure to investigate that carefully
before presuming you can host a large database on FreeBSD.

Instead, implement a journal (Linux) or logging (Solaris), FreeBSD's solution to
filesystem integrity issues during a crash and resulting long filesystem recovery
times is a technique called soft updates. This orders writes such that the only type
of integrity issue after a crash are blocks marked as used but not actually "claimed"
by any file. After an unclean shutdown, the filesystem can be brought up almost
immediately. What's called a background fsck then runs against a static snapshot
of the filesystem, searching for unclaimed blocks to clean them up. This removes the
overhead of journaling, while avoiding the worst of the traditional non-journaled
filesystem issues—long integrity check times that hold up booting after a crash.
While not as common as journaling, this technique has been in use on FreeBSD
for ten years already without major issues.

Chapter 4

[87]

Given that PostgreSQL layers its own integrity checks on top of what the filesystem
implements, UFS2 certainly meets the requirements of the database. You just need
to be aware that the fsck activity related to the crash recovery will be a background
activity competing with database reads and writes, and that might happen during
the worst time—just after the server has started, when all of its caches are empty.

Just like on Linux, proper read-ahead significantly improves sequential read speed
on FreeBSD. The parameter is sized using the filesystem block size, which defaults
to 8 KB. The common useful range for this parameter is 32 to 256. Adjust the value
by adding a line to /etc/sysctl.conf like the following:

vfs.read_max = 32

To make this active, execute:

$ /etc/rc.d/sysctl start

The size of the write cache is set by the vfs.hirunningspace parameter. The
guidelines in the FreeBSD handbook suggest only increasing this to at most a small
number of megabytes. You may want to increase this value to something larger if
you are using a system with a battery-backed write controller, where the kernel can
likely dump much larger amounts of writes onto disk in a batch without significant
latency issues.

ZFS
Few filesystems have ever inspired the sort of zealous advocacy fans of ZFS regularly
display. While it has its weak points, in many respects ZFS is a reinvention of the
filesystem concept with significant advantages. One thing that's different about ZFS
is that it combines filesystem and RAID capabilities into an integrated pair. The
RAID-Z implementation in ZFS is a worthwhile alternative to standard RAID5 and
RAID6 installations.

ZFS defaults to working in records of 128 KB in size. This is much larger than a
PostgreSQL block, which can cause a variety of inefficiencies if your system is
regularly reading or writing only small portions of the database at a time (like many
OLTP systems do). It's only really appropriate if you prefer to optimize your system
for large operations. The default might be fine if you're running a data warehouse
that is constantly scanning large chunks of tables. But standard practice for ZFS
database installations that do more scattered random I/O is to reduce the ZFS
record size to match the database one, which means 8 K for PostgreSQL:

$ zfs set recordsize=8K zp1/data

Disk Setup

[88]

You need to do this before creating any of the database files on the drive, because
the record size is actually set per file. Note that this size will not be optimal for
WAL writes, which may benefit from a larger recordsize like the default.

One important thing to know about ZFS is that unlike Solaris's UFS, which caches
almost nothing by default, ZFS is known to consume just about all the memory
available for its Adaptive Replacement Cache (ARC). You'll need to reduce those
amounts for use with PostgreSQL, where large blocks of RAM are expected to
be allocated for the database buffer cache and things like working memory. The
actual tuning details vary based on the Solaris release, and are documented in the
"Limiting the ARC Cache" section of the ZFS Evil Tuning Guide at http://www.
solarisinternals.com/wiki/index.php/ZFS_Evil_Tuning_Guide.

For FreeBSD, refer to http://wiki.freebsd.org/ZFSTuningGuide for similar
information. One of the scripts suggested there, arc_summary.pl, is a useful one in
both its FreeBSD and Solaris incarnations, for determining just what's in the ARC
cache and whether it's using its RAM effectively. This is a potentially valuable tuning
feedback for PostgreSQL, where the OS cache is used quite heavily, but such use is
not tracked for effectiveness by the database.

ZFS handles its journaling using a structure called the intent log. High performance
systems with many disks commonly allocate a dedicated storage pool just to hold
the ZFS intent log for the database disk, in the same way that the database WAL is
commonly put on another drive. Though, there's no need to have a dedicated intent
log for the WAL disk too. There is more information on this and related topics in the
ZFS for Databases documentation at http://www.solarisinternals.com/wiki/
index.php/ZFS_for_Databases.

Similarly to XFS, if you have a system with a non-volatile write cache such as a
battery-backed write controller, the cache flushing done by ZFS will defeat some
of the benefit of that cache. You can disable that behaviour by adjusting the
zfs_nocacheflush parameter; the following line in /etc/system will do that:

set zfs:zfs_nocacheflush = 1

And you can toggle the value to 1 (no cache flushing) and back to 0 (default, flushing
enabled) with the following on a live filesystem:

echo zfs_nocacheflush/W0t1 | mdb -kw

echo zfs_nocacheflush/W0t0 | mdb –kw

Chapter 4

[89]

ZFS has a few features that make it well suited to database use. All reads and writes
include block checksums, which allow ZFS to detect the sadly common situation
where data is quietly corrupted by RAM or disk errors. Some administrators
consider such checksums vital for running a large database safely. Another useful
feature is ZFS's robust snapshot support. This makes it far easier to make a copy of a
database you can replicate to another location, backup, or even to create a temporary
copy you can then rollback to an earlier version. This can be particularly valuable
when doing risky migrations or changes you might want to back out.

Because of the robustness of its intent log and block checksum features, ZFS is
one filesystem where disabling PostgreSQL's full_page_writes parameter is a
candidate for optimization with little risk. It's quite resistant to the torn pages issue
that makes that parameter important for other filesystems. There is also transparent
compression available on ZFS. While expensive in terms of CPU, applications that
do lots of sequential scans of data too small to be compressed by the PostgreSQL
TOAST method might benefit from reading more logical data per physical read,
which is what should happen if compression is enabled.

Windows filesystems
The choices for Windows are much easier, because there's only one of them that
makes sense for a database disk.

FAT32
While generally deprecated at this point, it's still common for USB devices in particular
to be formatted with the older FAT32 filesystem. Since FAT32 is not journaled, unclean
shutdown requires running the chkdsk utility to recover from. Due to this and the
lack of security on FAT32 files, the PostgreSQL installer does not support installing a
database cluster directly onto a FAT32 volume. However, it's possible to install onto
this filesystem if you manually run the initdb command after regular installation.
However, this is not recommended for a reliable database configuration.

NTFS
Microsoft's flagship filesystem is NTFS. This filesystem uses non-ordered metadata
journaling, similar to the writeback journal mode on Linux. This is generally reliable,
but on rare occasions you might run into a volume that cannot be mounted in
Windows without running the old chkdsk utility in a special mode as part of
booting the system.

Disk Setup

[90]

As described earlier, PostgreSQL installations on Windows using NTFS should
prefer to set the following in the database configuration:

open_datasync=fsync_writethrough

This configures the filesystem to flush its WAL writes through any volatile disk
write caches.

It's possible to create the functional equivalent of a symbolic link on NTFS called a
filesystem junction. The Junction utility available from http://www.microsoft.
com/technet/sysinternals allows creating these. This lets NTFS volumes on
Windows to relocate the pg_xlog or other parts of the database tree to another
filesystem, and to use tablespaces too.

Theoretically you can create an NFTS volume of 16 TB using the default cluster size
of 4 KB, the same limit as most Linux deployments. It's even straightforward to
create a volume with larger clusters though; at 64 KB, NTFS might support 256 TB
volumes instead. As noted at the beginning of this chapter, partitioning such large
volumes on PC hardware requires you create a GUID Partition Table instead of using
the older MBR approach, and that your version of Windows will understand the
resulting partition scheme.

It's possible to turn on automatic compression of a NTFS volume, potentially
valuable for the same reasons mentioned in the ZFS section. In practice, systems
doing the sort of large queries that most benefit from this are not commonly
practical on Windows anyway, due to its limitations in shared memory and
connection capacity.

Adjusting mounting behaviour
Similarly to the UNIX noatime parameter, it's possible to prevent NTFS from
constantly updating when files were last accessed. Another useful tweak is to turn
off the 8.3 filename generation that Windows does for backward compatibility with
older applications. These behaviors are disabled like the following:

fsutil behavior set disablelastaccess 1

fsutil behavior set disable8dot3 1

Be careful when disabling the 8.3 filename generation in particular. One area this
has been known to cause problems is if the %TEMP% or %TMP% environment variables
are using the short filenames to access their files. You may need to update these
variables to refer to the full pathname instead.

Chapter 4

[91]

Disk layout for PostgreSQL
Since PostgreSQL uses standard filesystems for all its files, there are several parts of
the database you can relocate to somewhere else just by moving the associated files
and adding a symbolic link to the new location.

Symbolic links
Symbolic links (also called a symlink) are just entries in a filesystem directory that
point towards another location. UNIX systems originally preferred to use what are
called hard links, which link to the new location quite directly. The entry in the
filesystem literally points to another spot on disk. To make this easier to manage,
the normal approach now is to use soft symlinks, which are easily visible. The most
common thing to relocate using a symlink in PostgreSQL is the WAL transaction log.
You can do this after the database cluster is created (but with the server down!) like
the following:

$ cd $PGDATA

$ mv pg_xlog /disk

$ ln -s /disk/pg_xlog pg_xlog

$ ls -l pg_xlog

lrwxrwxrwx 1 postgres postgres 11 2010-04-27 17:35 pg_xlog -> /disk/pg_
xlog

Starting in PostgreSQL 8.3, it's possible to use the --xlogdir parameter when
running initdb to create the cluster. This doesn't work any differently—it will just
create the soft symlink for you. The preceding technique is still quite common, and
there's no reason to prefer one over the other besides what seems easier to you.

Tablespaces
The main unit of storage for a PostgreSQL database is the tablespace. Tablespaces
are described accurately by their name: they're a space to put tables (and indexes)
in. The idea is that every logical disk you want to use for a distinct purpose gets
assigned a tablespace name, and then when you create a table you refer that
tablespace to put it there:

$ mkdir /disk/pgdata

$ psql

postgres=# CREATE TABLESPACE disk LOCATION '/disk/pgdata';

postgres=# CREATE TABLE t(i int) TABLESPACE disk;

Disk Setup

[92]

Tablespaces are also implemented inside the database using symbolic links, and
your OS needs to support them (or an equivalent like the NTFS junction) for this
to work. Databases and tables are by default created in a virtual tablespace named
pg_default. You can change that by setting the default_tablespace parameter in
the server configuration. It's also possible to relocate an entire database by setting the
TABLESPACE parameter when running CREATE DATABASE.

Database directory tree
With this background in mind, here are the major directories inside the PostgreSQL
database structure that initdb creates:

base: This is the location that holds pg_default, the default tablespace.
The template databases and any additional ones created without an explicit
tablespace assignment will all be placed here. The next chapter digs into the
details of how the base/ directory is organized into databases and tables.
global: Holds the pg_global virtual tablespace. This is where system
tables shared by all databases in a cluster, such as the database roles and
other system catalog data, are stored.
pg_clog: The transaction commit log data is stored here. This data is actively
read from, by VACUUM in particular, and files are removed once there's
nothing interesting in them. This directory is one of the reasons PostgreSQL
doesn't work very well if you mount the database in a way that bypasses
the filesystem cache. If reads and writes to the commit logs are not cached
by the operating system, it will heavily reduce performance in several
common situations.
pg_stat_tmp: This directory contains the files used to store database
statistics. These files should never get very big, and if they do you'll
see the database statistics process start consuming more resources.
pg_tblspc: When you create a new tablespace, this directory is where the
symbolic link created to manage that is saved.
pg_xlog: The database WAL used for crash recovery is stored here.
pg_subtrans: Contains data related to subtransactions.
pg_multixact: Contains multi-transaction status data. In situations
where your application heavily uses shared row locks, use of this
direction could be heavy.
pg_twophase: Holds data related to two-phase commits.

•

•

•

•

•

•

•

•

•

Chapter 4

[93]

Generally, the first thing people relocate onto its own disk is pg_xlog. Then they add
more tablespaces to split out heavily accessed tables. Next, move temporary files.
The directories containing transaction details are much less likely candidates to be
split to their own disks, but applications where this has improved performance have
been observed by PostgreSQL users.

Temporary files
There are a few situations where PostgreSQL saves temporary files, ones that are
not critical to database operation. Tables created using CREATE TEMPORARY TABLE
and their respective indexes are one source. Probably more importantly, when
the database is doing a query that involves a sort operation, and the data exceeds
work_mem, temporary files are created for that purpose. So in situations where your
users will be doing lots of sorting of large tables, like in a data warehouse, there can
be quite a bit of activity going to disk for this purpose.

The temp_tablespaces database parameter allows relocating all the temporary
tables to one chosen from the list of additional tablespaces provided. If you put
more than one tablespace on that list, which is used is selected at random when a
transaction first does something that needs one. However, when a second or later
bit of temporary storage is needed by a transaction, the database actually iterates
over the list sequentially, therefore spreading activity more evenly across all the
provided tablespaces.

By default, temporary objects are created in the default tablespace. They'll all appear
in base/pgsql_tmp unless relocated. If you're not using temporary tables heavily,
monitoring activity and disk space used in that directory can be used to estimate
how heavy the sorting activity is on your database. This technique works even on
earlier PostgreSQL releases that don't have the log_temp_files parameters. You
can monitor disk space instead of relying on the logs for that information, and
monitoring disk space used can be useful even if that's available, because it gives you
an idea of how much concurrent sorting is happening. That can be hard to compute
just from the log file entries.

One interesting property of temporary files is that they're prime candidates for
storage even on less reliable drives, such as you might have your operating system
on. It's possible to safely, and sometimes quite usefully, put the temporary files onto
a directory on your OS disks if they are underutilized. Just be careful because if those
disks are lost, you'll need to recreate that empty tablespace on the OS drives of the
replacement, or remove it from the temp_tablespaces list.

Disk Setup

[94]

Disk arrays, RAID, and disk layout
Many people start their PostgreSQL tuning work by asking about how to spread the
various pieces of the database across a large disk array. Recommending how to do
that is really application specific, and it's only after covering so much background
the last few chapters that the right context is available to even discuss it.

If you have a really large number of disks available, a dozen or more, presuming that
disk space needed for the database wasn't a problem a good configuration would
look like the following:

Location Disks RAID Level Purpose
/ (root) 2 1 Operating system
$PGDATA 6+ 10 Database
$PGDATA/pg_xlog 2 1 WAL
Tablespace 1+ None Temporary files

Here we're presuming that you want every bit of important data to be redundant,
and therefore are using the mirroring facilities of RAID1 to do that. This gives a
3:1 ratio between database read/write throughput and that of the WAL, which is
usually enough that activity to each will be balanced well. If you only have two pairs
of drives for those (the database is on one pair and the WAL on another), it's likely
the WAL will get considerably less activity than the database.

The leftover disk here from the hypothetical set of 12 would
be assigned as a hot spare, something it's always a good idea
to allocate. Given that arrays tend to be an even number of
disks, pairing some temporary space with a hot spare can work
out better than having two hot spares. Another typical use for
a single leftover disk is to create a place to store non-critical
backups and other working files, such as a database dump that
needs to be processed before being shipped elsewhere.

Here's where things get tricky…what if instead, the preceding was done like
the following:

Location Disks RAID Level Purpose
/ (root) 12 10 OS, DB, WAL

Chapter 4

[95]

Would that perform better or worse than the manually split setup for the same
number of disks shown previously? The answer to that is simple: there's no way to
predict that. Having your data striped across so many disks is going to improve the
average performance of every operation you do on this array. This setup is almost
certainly better for a workload where random seeks are the norm. However, there are
several database components that are not accessed randomly. The pg_xlog is only
written to sequentially. Temporary files are not strictly sequential, but they're not
heavily random either, and writes to the operating system drive normally happen
without the force of a sync operation forcing them to disk, which means that the OS is
free to delay those writes for improved write combining and sorting—both of which
reduce seeks. Putting everything onto one big array will reduce the chances to take
advantages of optimizations like that, because the cache flushing required to make
the database happy is likely to force out plenty of other data too, particularly on ext3.

With that perspective, you can think about this a bit differently:

Function Cache Flushes Access Pattern
Operating system Rare Mix of sequential and random
Database Regularly Mix of sequential and random
WAL Constant Sequential
Temporary files Never More random as client count increases

The exact mix of sequential and random behavior for your database is completely
application dependent, and how many concurrent users are involved impacts both
database and temporary file patterns—and again, what your application is doing
impacts whether temp files are even important. Any attempt to optimize disk layout
that doesn't take into account the access pattern of your app, including concurrency,
is unlikely to predict performance correctly.

And even if you do have enough information that you believe you can predict an
optimal layout, the odds are still against you. To quote noted computer scientist
Donald Knuth, "…the universal experience of programmers who have been using
[performance] measurement tools has been that their intuitive guesses fail". You
would be unwise to presume that you will be the lucky person who guesses correctly.

If you do split something out, make sure to measure the improvement to confirm
whether you were right. Ideally, you'd be able to simulate that in a test environment
before doing so on a production system. In the real world, most development servers
have far fewer disks than the production ones, making that tough to simulate. One
good place to try it is during acceptance testing of new production hardware. You
should be doing general system burn-in and testing of any candidate replacement for
a production database server. That's a great time to experiment with (and measure!)
changes in application performance, including different disk configurations.

Disk Setup

[96]

Disk layout guidelines
There are a few guidelines that can help you prune down the possible configurations:

Avoid putting the WAL on the operating system drive, because they have
completely different access patterns and both will suffer when combined.
Normally this might work out fine initially, only to discover a major issue
when the OS is doing things like a system update or daily maintenance
activity. Rebuilding the filesystem database used by the locate utility
each night is one common source on Linux for heavy OS disk activity.
If you have evidence you don't do any large sorting, the temporary files can
be kept at their default location, as part of the database disk.
On Linux systems running ext3, where fsync cache flushes require dumping
the entire OS cache out to disk, split the WAL onto another disk as soon as
you have a pair to spare for that purpose.

Beyond those rough rules, it's hard to settle arguments between the "put everything
in one big array and let the OS sort it out" vs. "break out everything into individually
assigned disk so the DBA can tune" crowds. As is the case with many types of
database tuning, in order to really know for sure what works best here you'll need
to simulate both configurations, using a benchmark workload as similar as possible
to your production workload.

As for which side I personally fall onto, I prefer to split things up. The reason for
that is not because I expect it to perform better, but because it's unquestionably
easier to quantify what an application is doing that way. Being able to measure the
exact balance of data going to database, WAL, and temporary disks is valuable both
for general optimization, as well as for finding bottlenecks in application design. I
consider the value of being able to monitor to that level to be the tie-breaker
between these schools of thought on database layout.

Remember that the hardware your application is currently running on is not
necessarily going to be what it runs on forever. If I'm planning out a new server, and
I can predict the WAL vs. DB activity ratio based on measurements of the old system,
that's not just guessing anymore, and the odds are much better it will be successful.
But if the old system only has a large pile of disks, information gathered from them
isn't nearly as useful in capacity planning for the future.

•

•

•

Chapter 4

[97]

Summary
There aren't a lot of easy answers for what filesystem to use or how to arrange your
disks. It's better to err on the side of paranoia, not performance, if you expect to keep
your database intact under the sort of odd things that will happen to it in production.
And unfortunately, maximum reliability is usually slower too. The most valuable
thing you can do is be systematic in how you test. Instrument what you're doing,
benchmark whenever possible, and always try to collect reproducible examples of
realistic workloads whenever they appear.

Filesystem crash protection is mostly commonly done by journaling
writes, which adds overhead but makes recovery time after unclean
shutdown predictable.
On Linux, the ext3 filesystem allows a wide variety of tuning possibilities for
its journal. While not the best performer, its occasional problem spots are at
least well understood. Both XFS and ext4 are at early production quality right
now, and expected to become increasingly viable alternatives to ext3 in the
near future.
Solaris and FreeBSD both have older UFS filesystems and the newer ZFS
available. ZFS has several features that make it uniquely suited for large
database installations.
The NTFS filesystem on Windows shares many fundamentals with the
UNIX-based ones popular on other operating systems.
Increasing read-ahead, stopping updates to file access timestamps, and
adjusting the amount of memory used for caching are common tuning
techniques needed to get good performance on most operating systems.
PostgreSQL allows relocating parts of the database through both symbolic
links and creation of tablespaces.
The optimal way to arrange the components of a database across
many available disks is very dependent on the specific application
and usage pattern.

•

•

•

•

•

•

•

Memory for Database
Caching

When you start a PostgreSQL server, it allocates a fixed-size block of shared memory
where all access to the information in the database passes through. In addition,
each client that connects to memory uses up its own bit of memory, expanding it
as the client uses resources such as sorting space and storing data about pending
transactions to commit.

Some settings in the database can be adjusted by the clients after they connect.
For example, the work_mem setting, a limiter on how much memory can be used
for sorting, can be increased by a client after he connects. These allocations use
non-shared memory, and tuning them is covered in the next chapter.

The major component to the shared memory used by the server is a large block
allocated for caching blocks, read from and written to the database. This is set by a
parameter named shared_buffers. Monitoring and optimizing how this memory is
used is the major topic of this chapter. It is one of the most important parameters to
get good performance, and one of the hardest to predict an optimum value for.

Memory units in the postgresql.conf
All of the shared memory settings and the starting client settings for the database
are stored in the postgresql.conf file. In PostgreSQL 8.2, a change has greatly
simplified memory settings. In earlier versions, you had to know the unit for each
memory related setting; some were in units of 1 KB, and some 8 KB, which was
difficult to keep track of.

Memory for Database Caching

[100]

Nowadays, you can still set values like that, but the preferred practice is to use a
memory size, instead. For example, if you wanted to set the wal_buffers value that
controls how much memory to use for buffering write-ahead log data, you can do
that now with a line like the following in the postgresql.conf:

wal_buffers = 64 KB

If you use the SHOW command to display the value for this setting, it will write it
similarly (although, it's possible that the value will get re-scaled to display better).
However, the database still converts this value into its own internal units, which
for this parameter happens to be 8 K blocks. It's helpful to be aware of this because
you'll need to know the actual values to understand some of the internal information
covered in this chapter.

The pg_settings view in the database can be used to see how that conversion
happens. It's also helpful to know that current_setting() function can be used to
get the same basic information as SHOW, but in a way you can use in queries. You can
combine these two to help see the relationship between the internal way in which the
server stores parameters and what they actually represent:

$ psql

postgres=# show wal_buffers;

 wal_buffers

 64kB

postgres=# SELECT name,setting,unit,current_setting(name) FROM pg_
settings WHERE name='wal_buffers';

 name | setting | unit | current_setting

-------------+---------+------+-----------------

 wal_buffers | 8 | 8kB | 64kB

Increasing UNIX shared memory parameters
for larger buffer sizes
When you use the initdb command to create a new PostgreSQL cluster, the server
detects how large a shared memory block it can allocate by starting at a moderate
value and decreasing it until the allocation is successful. This is necessary because
on many platforms, including some very popular UNIX ones, the default values for
allocation of shared memory is very low. 32 MB or less is quite common, even on
recent software like the constantly updated Linux kernels, and really small values
are possible on older systems.

Chapter 5

[101]

The default memory sizes in the postgresql.conf are not
optimized for performance or for any idea of a typical configuration.
They are optimized solely so that the server can start on a system
with low settings for the amount of shared memory it can allocate,
because that situation is so common.

There are a variety of common errors you can get when a PostgreSQL server fails
to start, documented at http://www.postgresql.org/docs/current/static/
server-start.html, and the one related to shared memory parameters being too
low looks like this:

FATAL: could not create shared memory segment: Invalid argument

DETAIL: Failed system call was shmget(key=5440001, size=4011376640, 03600)

The kernel resources documentation page at http://www.postgresql.org/
docs/current/static/kernel-resources.html goes over how to increase this
parameter in detail for most platforms. If you have a system that supports the
getconf command, which many UNIX-like systems do, the following program will
produce reasonable starting values by asking getconf for information about how
much memory is in your system:

#!/bin/bash

simple shmsetup script

page_size=`getconf PAGE_SIZE`

phys_pages=`getconf _PHYS_PAGES`

shmall=`expr $phys_pages / 2`

shmmax=`expr $shmall * $page_size`

echo kernel.shmmax = $shmmax

echo kernel.shmall = $shmall

This sets the maximum shared block size to one half of total memory and outputs
values suitable for a Linux /etc/sysctl.conf file. The following is an example
from a system with 2 GB of physical RAM, run as root:

./shmsetup >> /etc/sysctl.conf

sysctl -p

kernel.shmmax = 1055092736

kernel.shmall = 257591

Memory for Database Caching

[102]

Here shmmax is the maximum size (in bytes) for a single shared memory segment,
set to 1 GB. And shmall is the total amount of shared memory (in pages) that all
processes on the server can use. The number of bytes in a page depends on the
operating system; 4096 is a common value. A more robust version of this program is
included as one of this book's code samples, which handles this page math for you.

Kernel semaphores
While not a memory allocation figure, another occasional sysctl tweaking
requirement for PostgreSQL is to increase the number of available system semaphores,
an object used for process communication. The defaults on a recent Linux system look
like this:

$ ipcs -l

...

------ Semaphore Limits --------

max number of arrays = 128

max semaphores per array = 250

max semaphores system wide = 32000

max ops per semop call = 32

semaphore max value = 32767

...

One of the parts trimmed from the ipcs output also shows the shared memory
limits, so you can also double-check them with it. Setting higher semaphore limits is
done with a kernel parameter that combines the main four limits here into one line.
The last shown semaphore maps into that format like this:

$ sysctl kernel.sem

kernel.sem = 250 32000 32 128

All four of the values here might need to be increased on systems with a large
number of processes, setting the same way as the increased shared memory sizes.

Estimating shared memory allocation
It's possible to predict how much memory the PostgreSQL server is expected to
allocate given the server parameters. A table labeled "PostgreSQL shared memory
usage" near the bottom of http://www.postgresql.org/docs/current/static/
kernel-resources.html gives a rough estimate (last updated as of Version 8.3) of
how much shared memory is allocated by the server. It looks like this:

Chapter 5

[103]

Usage Approximate shared memory bytes
Connections (1800 + 270 * max_locks_per_transaction) * max_

connections

Autovacuum workers (1800 + 270 * max_locks_per_transaction) *
autovacuum_max_workers

Prepared transactions (770 + 270 * max_locks_per_transaction) * max_
prepared_transactions

Shared disk buffers (block_size + 208) * shared_buffers
WAL buffers (wal_block_size + 8) * wal_buffers
Fixed space requirements 770 kB

The first two lines are very similar because they're just accounting for the fact
that the autovacuum workers each take up their own connection. You can just
add max_connections + autovacuum_max_workers and use that as your true
connection count to simplify this estimate a bit.

Very little of this is likely to matter to you because all the other sizes are dwarfed by
shared_buffers unless your client count is extremely high. Assuming a PostgreSQL
9.0 server, these are the default values for the settings involved here:

Parameter Default value
max_locks_per_transaction 64
max_connections 100
autovacuum_max_workers 3
max_prepared_transactions 0
block_size 8192
wal_block_size 8192
wal_buffers 8

There's no default value you can assume for shared_buffers, because that value is
detected at server cluster creation time. The default setting of 0 for max_prepared_
transactions makes the prepared transaction space allocation go away altogether.

Prepared transactions involve the two-phase commit features
of the database, and have nothing to do with the much more
common, prepared statements that are used for things like
preventing SQL injection.

Memory for Database Caching

[104]

To further simplify the memory estimate computation, you can just add in the
autovacuum workers as clients (103 instead of 100). The main elements of the
allocation estimate table then become:

Usage Approximate shared memory bytes
Connections+AV workers 1.9MB
Shared disk buffers 8400 * shared_buffers
WAL buffers 64 kB
Fixed space requirements 770 kB

That's about 2.8 MB plus whatever the shared_buffers amount comes out as. As a
typical value for shared_buffers starts at 24 MB or more, it is obviously the dominant
thing to be concerned about when estimating shared memory consumption.

Inspecting the database cache
You can look inside the current contents of the PostgreSQL shared_buffers
database cache using the pg_buffercache module. This is one of the optional
contrib modules available that ships with PostgreSQL; see the Chapter 1, PostgreSQL
Versions for more information about making sure these are installed. An introduction
to pg_buffercache is available as part of the PostgreSQL documentation at
http://www.postgresql.org/docs/current/static/pgbuffercache.html

The information on how the database stores information in this chapter assumes
you have this module installed, so that you can look at how blocks in shared memory
change as you perform various activities. This is the best way to understand how the
relevant database internals work. On a production server, using pg_buffercache
may not be as vital, but it's extremely valuable for learning how the database works
with its shared memory well enough to tune memory use.

When hearing about a database block which is in memory, you'll
sometimes hear that referred to as a page instead. It's normal to hear
people speak of the database buffer cache being organized into 8 K
pages of memory. The only real distinction between these two terms,
which are normally used interchangeably, is that a page in memory
actually holds a block plus a small amount of overhead to identify
what block it is—what's referred to as the buffer header.

Chapter 5

[105]

Installing pg_buffercache into a database
The various parts of pg_buffercache include a library written in C and some SQL
that handles viewing the information. While the buffer cache itself is shared among
every database in the cluster, pg_buffercache only can show you really useful
information related to the database you're currently connected to. And its SQL
component needs to be installed in each database you want to monitor (but not
the templates ones) as well.

In order to install this utility or to use it, you will need to be connected to the
database as its superuser. Here's a sample that installs pg_buffercache into a
new database, presuming the RedHat Linux standard directory installation tree;
substitute your own PostgreSQL installation directory here:

$ createdb pgbench

$ psql -d pgbench -f /usr/share/postgresql/contrib/pg_buffercache.sql

SET

CREATE FUNCTION

CREATE VIEW

REVOKE

REVOKE

You can confirm that the utility is working as expected by looking at how large
your system shared_buffers is, and noting that the count of entries returned
by pg_buffercache matches it:

$ psql

postgres=# SELECT name,setting,unit,current_setting(name) FROM pg_
settings WHERE name='shared_buffers';

 name | setting | unit | current_setting

----------------+---------+------+-----------------

 shared_buffers | 3584 | 8kB | 28MB

postgres=# select count(*) from pg_buffercache;

 count

 3584

Memory for Database Caching

[106]

Note the small value here: 28 MB. This is from a Linux system running kernel 2.6.28
that has gigabytes of RAM. Even on something that recent, the kernel defaults only
allows under 32 MB of shared memory to be allocated.

There are several examples of useful reports, you can produce with pg_buffercache
by the end of this chapter.

Database disk layout
In order to fully interpret the information returned by utilities such as
pg_buffercache, and therefore use that information to adjust memory sizing,
it's helpful to know a bit about how databases are stored on disk. On UNIX-like
systems, typically the $PGDATA environment variable on your system will point
to your database cluster, and underneath the base/ directory actually contains
the database tables.

If you're not sure where your database is located on disk, but if you can connect to
the database, the location of this and other important files on the server is available
from the pg_settings view. This particular detail is in the data_directory
setting; here's an example of locating it, and a query showing the locations of other
interesting files related to the server:

postgres=# show data_directory;

 data_directory

 /home/postgres/data/

postgres=# select name,setting from pg_settings where category='File
Locations';

Assuming $PGDATA is set to point to data_directory, if you create a table and
wanted to look for the associated data file, that would start like this:

$ psql

postgres=# CREATE TABLE t (s SERIAL, i INTEGER);

NOTICE: CREATE TABLE will create implicit sequence "t_s_seq" for serial
column "t.s"

CREATE TABLE

$ ls $PGDATA/base

1 11872 11880

Chapter 5

[107]

These three directories each contain one database: template0, template1, and
the default postgres database. Both template databases are used to create new
databases; their use is documented at http://www.postgresql.org/docs/
current/static/manage-ag-templatedbs.html.

The cryptic numbers are what is called an object identifier or OID. In early
PostgreSQL versions, every row in every table received an OID, which was in some
cases used as a way to uniquely identify that row. To reduce overhead, these are no
longer included in individual rows by default. You can still do so if you want, and
many of the system catalog tables are created including them. There is more about
the OID and other hidden system columns at http://www.postgresql.org/docs/
current/static/ddl-system-columns.html.

Another handy system column to know about is ctid, which can
still be used as a way to uniquely identify a row, even in situations
where you have multiple rows with the same data in them. This
provides a quick way to find a row more than once, and it can be
useful for cleaning up duplicate rows from a database, too.

To decipher the structure of what's in the base/ directory, we need the OID of the
database and the relation OID (a table is a type of relation) for the table t just created.
You can determine those using the pg_database and pg_class system views; your
exact numbers here will likely be different if you try this yourself:

postgres=# SELECT datname,oid FROM pg_database WHERE datname='postgres';

 datname | oid

----------+-------

 postgres | 11880

postgres=# SELECT relname,oid,relfilenode FROM pg_class WHERE
relname='t';

 relname | oid | relfilenode |

---------+-------+-------------|

 t | 16391 | 16391 |

Here the OID and the file it's stored in are the same. There are a few things you can
do to a table that will change the name of the file used to store it, without changing
the OID. Examples include TRUNCATE, REINDEX, and CLUSTER. To find out where
a relation really is , you do need to check the relfilenode field in its pg_class
catalog entry.

Memory for Database Caching

[108]

If you want to do this sort of investigation from the command prompt, the oid2name
command (another optional contrib module like pg_buffercache) can provide the
same information in cases where the OID still matches the filename:

$ oid2name

All databases:

 Oid Database Name Tablespace

 11880 postgres pg_default

 11872 template0 pg_default

 1 template1 pg_default

$ oid2name -t t

From database "postgres":

 Filenode Table Name

 16391 t

In this example, having not inserted anything into this table yet, you'd expect the
file for it to be empty, and for there to be no blocks containing its data in the buffer
cache, which is the case as follows:

$ ls -l $PGDATA/base/11880/16391*

-rw------- 1 postgres postgres 0 2010-03-01 20:53 /home/postgres/ data/
base/11880/16391

$ psql

postgres=# SELECT reldatabase,relfilenode,relblocknumber FROM pg_
buffercache WHERE relfilenode=16391;

 reldatabase | relfilenode | relblocknumber

-------------+-------------+----------------

(0 rows)

Creating a new block in a database
Once you insert something into this table, a page is allocated in the buffer cache
to hold that new information, and a standard 8 K block is allocated on disk:

$ psql -c "INSERT into t(i) values (0)"

INSERT 0 1

$ ls -l $PGDATA/base/11880/16391*

-rw------- 1 postgres postgres 8192 2010-03-01 21:03 /home/postgres/
pgwork/data/base/11880/16391

Chapter 5

[109]

$ psql -c "SELECT reldatabase,relfilenode,relblocknumber,isdirty,usagecou
nt FROM pg_buffercache WHERE relfilenode=16391;"

 reldatabase | relfilenode | relblocknumber | isdirty | usagecount

-------------+-------------+----------------+---------+------------

 11880 | 16391 | 0 | t | 1

Note that this block is dirty. That means that the version in memory has not been
written out to disk yet. Also note that the usagecount for it is 1. This means that one
database process has accessed this block since its section of the buffer cache was last
considered as a candidate for re-use.

Showing the usagecount in pg_buffercache is only available in
PostgreSQL 8.3 and later. You can leave that part out of the various
examples shown in this chapter. You'll just not be able to get quite as
much information about how popular the blocks you're viewing statistics
about are.

Writing dirty blocks to disk
There are a couple of ways blocks that are dirty can be written to disk. The easiest
one to trigger at will is a checkpoint:

postgres=# checkpoint;

CHECKPOINT

postgres=# SELECT reldatabase,relfilenode,relblocknumber,isdirty FROM pg_
buffercache WHERE relfilenode=16391;

 reldatabase | relfilenode | relblocknumber | isdirty |

-------------+-------------+----------------+---------+

 11880 | 16391 | 0 | f |

$ ls -l $PGDATA/base/11880/16391*

-rw------- 1 postgres postgres 8192 2010-03-01 21:05 /home/postgres/
pgwork/data/base/11880/16391

You can see the block is no longer dirty after the checkpoint, and the last updated
time for the file saving its data on disk has moved forward to match this write.

From the perspective of the database, each table is a series of numbered blocks, each
8 K in size, starting at 0 when you create the first row and moving forward from
there. As you further extend the size of the table, the upper limit for individual files
is 1 GB. Beyond that size, you'll see multiple files.

Memory for Database Caching

[110]

There are two other ways that a dirty block can be written out, which are described
in the next few sections. To cover the full lifecycle of how blocks get in and out of the
buffer cache, a diversion into crash recovery and checkpoints is needed to explain
some of the activity you'll see going on.

Crash recovery and the buffer cache
If you had to write out every database change to disk immediately after it's made,
the database performance would really suffer. This is particularly true on blocks that
you change all the time, which would then be written very often. But you have to
be able to recover if the server crashes before things are written out completely, too.
Periodic database checkpoints take care of that.

Checkpoint processing basics
A checkpoint iterates over every dirty block in the system as of a point in time,
writing them out to disk. Then that information is flushed to permanent storage,
via the same mechanisms WAL writes are. Once that's done, if your system crashes,
recovery from the crash will start from this new last point where the database was
sure that everything on disk was consistent. In this way, the database constantly
takes forward the recovery-starting position to the point in time the previous
checkpoint started at. Everything that happened to dirty blocks before this is
guaranteed to have been written to the database blocks on disk, and therefore the
amount of potential information that might be lost in a crash is kept under control.

Write-ahead log and recovery processing
In Chapter 2, Database Hardware, the PostgreSQL write-ahead log was introduced
as the mechanism used to recover data lost in a crash. Its documentation starts at
http://www.postgresql.org/docs/current/static/wal.html

The WAL is mainly a stream of information about database blocks. When you
commit a data block change, if this is the first time since the last checkpoint the
block has been changed, the entirety of the original block is written out. That means
an 8 K WAL write even if you're changing only a single byte. This behavior is
optional, but necessary if you want safe crash recovery; see the documentation on
full_page_writes for more information: http://www.postgresql.org/docs/
current/static/runtime-config-wal.html. Once a page has been written out
at least once after a checkpoint, just the information about the row that's changed
needs to be written.

Chapter 5

[111]

One side-effect of this structure is that just after a checkpoint, there is a possibility of
write I/O to the WAL to spike, because every page that is dirtied is going to get a full
page write. Once the more popular blocks such as high-level index structures have
been fully written once, additional WAL updates to those pages will only include the
row deltas, and therefore generate less write volume than the first change.

If you ever wondered how the database was able to recover from crashes even if
they involved partial writes of blocks to disk, this is the mechanism that makes it
happen. After a crash, recovery starts from wherever the last checkpoint ended. If
you know exactly what was originally in each block you modify, and what changed
in it each time it was modified, replaying those changes will include everything
needed to put the disk block back into the same state it would have ended up in
had the server not crashed.

Checkpoint timing
Checkpoints are valuable because they reduce the amount of time required
to recover from a crash, so you want to perform them as often as you can stand.
However, the overhead of both the checkpoint writes and the subsequent full page
writes to the WAL is expensive, which means you don't want checkpoints to happen
too often.

You can adjust how often checkpoints occur by modifying two database tunables
that control the two primary ways by which a checkpoint starts:

Each time a 16 MB WAL segment is filled, and a new WAL segment is
allocated, the database counts how many WAL segments have been used since
the last checkpoint. When this number reaches the checkpoint_segments
tunable, another checkpoint is requested. Checkpoints triggered this way are
counted by incrementing the pgstat_bgwriter.checkpoints_req statistic.
When checkpoint_timeout of time has passed since the last checkpoint,
another one will occur regardless of how many segments have been used.
This is accounted for in the pgstat_bgwriter.checkpoints_timed statistic.

If you do something that manually triggers a checkpoint, such as executing the
CHECKPOINT command, these are counted in the checkpoints_req category. In
addition to monitoring the statistics, you can see what exactly happens during
each checkpoint by turning on the log_checkpoints parameter.

If you have checkpoint_segments set very low—the default is a tiny 3 resulting
in a checkpoint after only 48 MB of WAL writes—and you reach a segment driven
checkpoint required fast enough, a warning about this tuning error is shown in the
database logs.

•

•

Memory for Database Caching

[112]

log_checkpoints and pgstat_bgwriter are only available
in PostgreSQL 8.3 and later. In earlier versions, the only useful
way to determine when a checkpoint happened was to set the
checkpoint_warning to a very high value—such as its maximum
of 3600 seconds—which then forces a harmless warning entry into the
database log file every time a checkpoint happens. Unless it coincides
with a message about the segments being too low, you won't know
for sure whether this checkpoint was triggered for time or segment
reasons. Generally you can make a good guess just by noting when
the previous checkpoint was. If it was checkpoint_timeout before
this one, it's likely a time-driven checkpoint.

Checkpoint tuning based on what's inside the buffer cache and the statistics shown
in pg_stat_bgwriter is a major subject covered in Chapter 11, Database Activity and
Statistics. The basics of their impact on disk I/O can be explained simply—but it does
depend heavily on the version of the database you're running.

Checkpoint spikes
As you might guess, if there's a lot of dirty data in a large shared buffer cache,
writing it all out once will really cause I/O on your disks to increase. This is
particularly true in PostgreSQL Version 8.2 and earlier, which just write the entire
dirty portion of the cache out as fast as possible—regardless of its impact on the
rest of the system.

Spread checkpoints
Starting in PostgreSQL 8.3, the spread checkpoint feature, tuned by
checkpoint_completion_target, aims to reduce the amount of writes in any unit
of time by spreading them out over a much longer period of time. For recovery
to work, it's only necessary that a checkpoint finish before the next one can start.
There's no reason you can't have one checkpoint start almost immediately after
the previous one, executing and slowly writing everything that happened while
the previous checkpoint was active. This is exactly what the spread checkpoint
feature does. It estimates when the next checkpoint is coming based on whether
checkpoints seem to be happening because of the timeout being reached or because
the checkpoint segment limit was reached, and aims to finish at the completion target
percentage of that value.

Chapter 5

[113]

It is still possible to run even into checkpoint spikes, given the spread checkpoint
feature. They are particularly common on filesystems that don't know how to force
to disk the changes to a single file at a time. On Linux, ext3 has a particularly bad
limitation. Any attempt to sync a single file will write the entire write cache for that
device out to accomplish that. This can easily lead to a large checkpoint I/O spike as
many files worth of data are all forced out at once. Better filesystems such as XFS and
ext4 don't suffer from that particular problem, but checkpoint spikes are still possible
even on them.

Database block lifecycle
The normal sequence by which a block makes its way through shared memory and
either onto (or back onto) disk works like this:

1. A page to hold the database block needed is requested for allocation in the
shared buffer cache. If that block already exists in there, no disk read is
needed. Otherwise, ask the operating system to read the page into memory.
In either case, at this point the page in memory will have its usage count
increased, because presumably it's being requested so that it can be used
for something. The pgstat_bgwriter.buffers_alloc statistics will be
incremented to count this allocation.

2. Changes are made to the block. In the last example, an INSERT created a new
row in a new block. You might also UPDATE or DELETE something that
changes a block. The block is now dirty.

3. The transaction commits to the WAL. At this point, whether or not the
dirty block is written out to the database file on disk in the near future, the
information needed to make sure that happens eventually is safe—presuming
your hardware doesn't have the sort of problematic write-back cache warned
against in the disk hardware section.

4. Statistics about all of the mentioned steps, that show up in places like
pg_stat_user_tables, are updated.

5. The dirty block is written to disk, and the buffer page is marked clean.

Those last two steps are asynchronous: the statistics update and the write of the dirty
block don't happen instantly, they happen when it's next the appropriate time for
them to.

Memory for Database Caching

[114]

Dirty block write paths
Once a block has been made dirty in shared memory, there are three possible ways it
can be written back to the database, each tracked by a counter in pg_stat_bgwriter:

buffers_checkpoint: Clearing all of the dirty blocks included as part of a
checkpoint write are accounted for here. This value jumps all at once when
the checkpoint finishes, which makes monitoring this an alternate way
to figure out when checkpoints finished in addition to the log files.
buffers_backend: A backend (any process besides the background writer
that also handles checkpoints) tried to allocate a buffer, and the one it was
given to use was dirty. In that case, the backend must write the dirty block
out itself before it can use the buffer page.
buffers_clean: The type of backend write described in the last few steps
is making some other process stall for a moment while it writes out dirty
data. To keep that from happening as often, the background writer process
scans forward looking for blocks that might be allocated in the near future
that are dirty and that have a low usage count (alternatively called the Least
Recently Used or LRU blocks). When it finds them, it writes some of them
out pre-emptively, based on historical allocation rates. Should they get dirty
again before they're reallocated to a backend, that effort was wasted. The
usage count and dynamically tuned approach used by the background
writer make that unlikely.

Generally, the best type of write here is the one done by a checkpoint. In each
of the other cases, it's possible this block will get dirty again before the next
checkpoint, which makes the earlier write a waste of resources. More on using
this pg_stat_bgwriter data to tune write performance will appear in Chapter 11,
Database Activity and Statistics.

Database buffer cache versus operating
system cache
Unlike many traditional database products, PostgreSQL does not assume or even
prefer that the majority of the memory on the system be allocated for its use. Most
reads and writes from the database are done using standard operating system
calls that allows the operating system's cache to work in its usual fashion. In some
configuration WAL writes will bypass the OS cache, that's the main exception.

•

•

•

Chapter 5

[115]

If you're used to a database where most system RAM is given to the database and the
OS cache is bypassed using approaches like synchronous and direct writes, you don't
want to setup PostgreSQL that same way. It will be downright counterproductive in
some areas. For example, PostgreSQL's stores commit log information in the pg_clog
directory. This data is both written to and read from regularly, and it's assumed that
the operating system will take care of optimizing that access. If you intentionally
bypass PostgreSQL's intentions by using mounting tricks to convert writes to
synchronous or direct, you may discover some unexpected performance regressions
due to this issue, among others.

So why not just give all the RAM to the OS to manage? The main reason that the
PostgreSQL shared buffer cache can do better than the operating system is the way
it keeps a usage count of buffers. This allows buffers to get a "popularity" score from
0 to 5, and the higher the score the less likely it is those buffers will leave the cache.
The way this works, whenever the database is looking for something to evict to
make more space for data it needs, it decreases that usage count.

Every increase in usage count makes that block harder to get rid of. The
implementation used is called a clock-sweep algorithm.

Typical operating system caches will only give any buffer one or two chances before
that data is evicted, typically with some form of LRU algorithm. If your database has
data in it that accumulates a high usage count, it's likely that data is being served
better staying in the database's shared RAM than in the operating system's.

There are also some optimizations to the PostgreSQL buffer cache to deal with large
queries, such as sequential scans of the entire database and VACUUM, that let it hold
onto important data that's likely to be "blown out" of the operating system cache as
part of doing that job.

Doubly cached data
One reason for not making the shared buffer cache too large is that the OS cache is
also being used for reads and writes, and it's extremely likely that there's going to
be some wasted overlap there. For example, if you read a database block from disk
that's not been requested before by the server, it's first going to make its way into the
OS cache, and then it will be copied into the database buffer cache, what's referred to
as double buffering. The OS copy and the database cache copy will both be evicted
from their respective caches eventually, but for some period of time there's going to
be duplication there. Keeping shared_buffers at only a modest percentage of RAM
reduces the amount of such data likely to be duplicated.

Memory for Database Caching

[116]

Inspecting the OS cache
On some operating systems, it's possible to extract information from the operating
system's cache and combine it with details of the PostgreSQL one. If available, this
provides a more comprehensive view of the data than looking just at the database
side of things. Projects viewing this data are still in the early stages; however, some
example implementations include:

http://www.kennygorman.com/wordpress/?p=250: Python script showing
PostgreSQL objects in Linux memory.
http://pgfoundry.org/projects/pgfincore/: pgfincore provides this
data directly inside the database itself, where you might combine it with data
from pg_buffercache. Currently this targets Linux and PostgreSQL 8.4.

Checkpoint overhead
If your database buffer cache is large, it's also possible a large quantity of data could
be dirty when a checkpoint starts, causing a checkpoint I/O spike. When using a
later PostgreSQL version that supports spread checkpoints, you can tune checkpoint
frequency to reduce the average size of these spikes, and you'll also have the
pg_stat_bgwriter view to help you with that optimization.

But ultimately you should realize that every bit of data that's inside the database's
shared buffer cache needs to be accounted for at checkpoint time, while the data in
the OS cache does not. The flip side to this is that keeping data in shared_buffers
can reduce total write volume, when you modify the same data block more than once
per checkpoint—which is common for index blocks in particular. Sizing to optimize
has to consider both sides of this trade-off. You should aim for the most frequently
used blocks ending up in database shared memory, with the less popular blocks
spending more time in the OS cache.

Starting size guidelines
The "lore" for sizing shared_buffers generally specifies a suggestion in terms of
a percentage of system RAM. Some advocate only 10-15%. The thorough academic
exploration in the paper "Tuning Database Configuration Parameters with iTuned"
at http://www.cs.duke.edu/~shivnath/papers/ituned.pdf found 40 percent
optimal on a 1 GB system being tested on a wide range of queries. And occasionally
reports appear where 60 percent or more of total RAM turns out to be optimal.

•

•

Chapter 5

[117]

Generally, if you have a server where OS overhead is small relative to total memory
(any modern system with 1 GB or more of RAM), giving the database 25 percent
of total RAM is a reasonable starting setting for shared_buffers in the middle of
the effective range. It may not be optimal, but it's unlikely to be so high that double
buffering becomes an issue. And it's likely to be far better than the tiny default forced
on the database by the low shared memory parameters of typical operating system
kernel defaults.

Platform, version, and workload limitations
In addition to systems with small amounts of RAM, there are several situations
where even 25 percent of RAM is too much.

Early versions: Using a large buffer cache was made possible by
improvements in PostgreSQL 8.1. Earlier versions were hard pressed to even
use 512 MB of RAM effectively. Unless you intend to benchmark to prove
larger increases are valuable, a reasonable upper limit for 8.0 or earlier is
32768 pages (256 MB—versions this early don't allow using memory units
for their parameters either).
Windows: For reasons not yet fully identified by the PostgreSQL community,
the Windows platform does not perform well with large shared memory
allocations. Peak performance on Windows' installs is typically with
shared_buffers in the 64 MB to 512 MB range. Using 256 MB would be
an aggressive but likely still safe maximum value to use, again unless you
can benchmark to prove further increases are useful.
Checkpoint spikes: In Versions 8.2 and earlier, PostgreSQL performed
its checkpoint writes in what's essentially one big dump. This has an
extremely high potential to cause other I/O on the system to pause, often
for several seconds, until the checkpoint write finishes. If you have a version
of PostgreSQL before 8.3, and you have a write-heavy workload, you are
more likely to suffer from checkpoint-spike pauses than you are to benefit
from having more shared memory for queries—given that the OS cache
will supplement for you there. 128 MB of RAM is a reasonable starting
size for write-intensive workloads in earlier versions that do not support
spread checkpoints.
Shared server: If this is not a dedicated database server, you need to
carefully consider the requirements of other applications before allocating a
large portion of memory that is dedicated to the database. Since PostgreSQL
will always fall back to sharing the OS cache even if it doesn't have dedicated
RAM, smaller values for shared_buffers can make it much easier to build a
high performance host that's doing both database and application duties.

•

•

•

•

Memory for Database Caching

[118]

Very large systems: Experiments on systems with large amounts of RAM
suggest that likely due to internal partitioning issues in the buffer cache
(which haven't been adjusted since PostgreSQL 8.4), setting it larger than
approximately 8 GB can be counterproductive. If you have a system with a
very large amount of RAM, there is not much information available on where
cache sizing breaks down, but it's likely in the multiple gigabyte range. On
servers with 8 GB or more of RAM, you might start with only 2 GB dedicated
to the database, and only resize upward if cache inspection suggests it's
likely to be productive.

The typical PostgreSQL default install, where shared_buffers is 32 MB or less, is
unlikely to perform very well except in the least demanding situations. But there are
plenty of PostgreSQL systems that achieve good performance with shared_buffers
increased no further than the 128 MB to 256 MB range. If you're going to follow
standard guidelines and use a large amount of RAM, you owe it to yourself to
confirm it is being used well.

Analyzing buffer cache contents
You've seen and been told how using a block will increase its usage count. You've
also seen and been told how a dirty block might make its way out to disk. This
wasn't intended just as an academic exercise. Believe it or not, all of this information
is useful for determining how large your shared buffer cache should be!

If you want to do better than following a rule of thumb for how big to set
shared_buffers relative to the OS cache, you have two options. You can run your
own benchmarks with your application and see how the results vary, based on the
amount of shared memory dedicated to the database. Just be careful to account
for the influence of the larger OS cache when running multiple such tests, or you
can use knowledge of how the buffer cache works from inside it to help make
that decision.

Inspection of the buffer cache queries
Note that due to multiple changes between PostgreSQL in Version 8.3, few of these
queries will work without modification on earlier versions. You will have to remove
all references to usagecount and in some cases may need to adjust how values are
cast between types.

For the following examples, output (which are scripted into the code sample named
bufcache.sh included with the book), shared_buffers is set to 256 MB, and
pgbench is initialized with a scale of 50 (full coverage of pgbench, another database
contrib utility, appears in Chapter 8, Database Benchmarking):

•

Chapter 5

[119]

$ pgbench -i -s 50 pgbench

$ psql -x -c "select pg_size_pretty(pg_database_size('pgbench')) as db_
size"

-[RECORD 1]---

db_size | 711 MB

$ pgbench -S -c 8 -t 25000 pgbench

This makes for a total database size greater than the shared buffer cache can hold,
forcing some prioritization of what is and isn't kept in there, via the usagecount
mechanism. After creation, the queries run against the accounts table by pgbench
makes sure the cache is being used by some sort of workload worth analyzing: in
this case, many clients doing only reads from the accounts table, the largest in
the database.

The pg_buffercache module needs to be installed into the pgbench database before
any of these queries are run as well.

pg_buffercache requires broad locks on parts of the buffer cache when
it runs. As such, it's extremely intensive on the server when you run
any of these queries. They are not recommended for regular monitoring
use. A snapshot on a daily basis or every few hours is usually enough
to get a good idea how the server is using its cache, without having the
monitoring itself introduce much of a load. These are not queries you
want to run every minute.

Top relations in the cache
The following example appears in the documentation as an example for how to use
pg_buffercache, and it's quite a good way to start your analysis:

SELECT

 c.relname,

 count(*) AS buffers

FROM pg_class c

 INNER JOIN pg_buffercache b

 ON b.relfilenode=c.relfilenode

 INNER JOIN pg_database d

 ON (b.reldatabase=d.oid AND d.datname=current_database())

GROUP BY c.relname

ORDER BY 2 DESC

LIMIT 10;

Memory for Database Caching

[120]

Removing the system tables (which is being done on all the examples shown here)
shows that almost all of the cache is being used by the pgbench_accounts table and
the index enforcing its primary key, as expected given those accounts are all we were
running SELECT statements against:

 relname | buffers

---------------------------------+---------

 pgbench_accounts | 21838

 pgbench_accounts_pkey | 10739

Summary by usage count
That doesn't give any interesting information about the usage counts of either table
though; this query will be shown to them:

SELECT
 usagecount,count(*),isdirty
FROM pg_buffercache
GROUP BY isdirty,usagecount
ORDER BY isdirty,usagecount;

The results don't prove anything interesting so far, they just suggest there's not very
much accumulating a high usage count on a straight percentage basis:

 usagecount | count | isdirty

------------+-------+---------

 0 | 10544 | f

 1 | 12096 | f

 2 | 2709 | f

 3 | 2308 | f

 4 | 3119 | f

 5 | 1992 | f

Buffer contents summary, with percentages
This query is where you probably want to start when analyzing a new database. It
lets you quickly see not just how much data is being cached for each table, but how
much that represents relative to its total size:

Chapter 5

[121]

SELECT

 c.relname,

 pg_size_pretty(count(*) * 8192) as buffered,

 round(100.0 * count(*) /

 (SELECT setting FROM pg_settings

 WHERE name='shared_buffers')::integer,1)

 AS buffers_percent,

 round(100.0 * count(*) * 8192 /

 pg_relation_size(c.oid),1)

 AS percent_of_relation

FROM pg_class c

 INNER JOIN pg_buffercache b

 ON b.relfilenode = c.relfilenode

 INNER JOIN pg_database d

 ON (b.reldatabase = d.oid AND d.datname = current_database())

GROUP BY c.oid,c.relname

ORDER BY 3 DESC

LIMIT 10;

pg_relation_size() does not include data that has been stored in a TOAST table
associated with this one, and therefore may not be an accurate assessment of your
table's size. In PostgreSQL 9.0, you can replace this with the pg_table_size()
function added in that version, which does include TOAST information in its sum.
See http://www.postgresql.org/docs/current/interactive/storage-toast.
html for an introduction to TOAST, and http://www.postgresql.org/docs/
current/interactive/functions-admin.html for documentation of the system
size functions.

One troublesome change in PostgreSQL 8.4 that commonly impacts code
like this is that pg_relation_size() and pg_total_relation_
size() were changed to run against a regclass type instead of a text
name. These examples sidestep that by using a join with pg_class that
provides an OID, but your own queries similar to these may not be able to
use that trick.

This query needs to be run with psql -x to get results that aren't too wide to fit here,
and the interesting lines are as follows:

-[RECORD 1]-------+---------------------------------

relname | pgbench_accounts

buffered | 171 MB

buffers_percent | 66.6

Memory for Database Caching

[122]

percent_of_relation | 27.5

-[RECORD 2]-------+---------------------------------

relname | pgbench_accounts_pkey

buffered | 84 MB

buffers_percent | 32.8

percent_of_relation | 97.9

Now we're seeing something useful. While pgbench_accounts_key is only using
up 32.8 percent of the cache, it's holding onto nearly 100 percent of the data in that
index. This tells us that the database believes that keeping that data in memory is
really important. A breakdown of the usagecount data by relation will give more
insight into how that is happening.

Buffer usage count distribution
This query breaks down usage counts by relation and usage count, so you can see
exactly how usage count distribution differs between tables:
SELECT

 c.relname, count(*) AS buffers,usagecount

FROM pg_class c

 INNER JOIN pg_buffercache b

 ON b.relfilenode = c.relfilenode

 INNER JOIN pg_database d

 ON (b.reldatabase = d.oid AND d.datname = current_database())

GROUP BY c.relname,usagecount

ORDER BY c.relname,usagecount;

The results make it really obvious what's happening with the pgbench tables:

 relname | buffers | usagecount

----------------------------------+---------+------------

 pgbench_accounts | 10032 | 0

 pgbench_accounts | 10783 | 1

 pgbench_accounts | 953 | 2

 pgbench_accounts | 66 | 3

 pgbench_accounts | 4 | 4

 pgbench_accounts_pkey | 512 | 0

 pgbench_accounts_pkey | 1312 | 1

 pgbench_accounts_pkey | 1756 | 2

 pgbench_accounts_pkey | 2241 | 3

 pgbench_accounts_pkey | 3115 | 4

 pgbench_accounts_pkey | 1803 | 5

Chapter 5

[123]

The primary key index here isn't using up those many buffers, but the ones it does
have in the cache average a very high usage count. Meanwhile, the regular accounts
data takes up much more room, but extremely little of it gets a usagecount greater
than 1. This explains why the database considers pgbench_accounts_pkey a popular
relation it should keep a large portion in memory, while pgbench_accounts is being
treated as more transient data. This is really what you want. The ability to look up
data in the accounts table requires having the primary key index, so you'd hope and
expect as much of that index to be cached as possible.

Using buffer cache inspection for sizing
feedback
The recent examples give you the basic two things to look for when deciding if
your shared_buffers cache is large enough. First, compare what percentage of the
relations you believe are important to your application's performance appear to be
cached. If this number is low, you may benefit from a larger buffer cache. A helpful
secondary look at this information is available if you combine this with hit rates from
views such as pg_stat_user_tables, which Chapter 11, Database Activity and Statistics.

The balance of popular (high usage count) versus transient (low usage count) pages
tells you a lot about whether your cache is sized appropriately. If most of your
pages have low usage counts (0,1), but you're still getting good hit rates from the
table statistics, you can probably decrease the size of the buffer cache without a
performance loss. Even the simplest operating system LRU algorithm is capable
of making good caching decisions, where there aren't particularly popular pages
to prioritize over transient ones.

But if you are accumulating a large number of blocks with a high usage count (4,5),
this is strong evidence that your data is being served well stored in the database
shared buffer cache, and that your application might benefit from it being
even larger.

Memory for Database Caching

[124]

Summary
As database servers have so many different types of workloads they might
encounter, it's difficult to give any hard rules for optimal configuration just based on
server hardware. Some applications will benefit from having really large amounts
of dedicated database memory in the form of shared_buffers; others will suffer
large checkpoint spike problems if you do that. PostgreSQL versions starting with
8.3 do provide you with tools to help monitor your system in this area though. If you
combine that with some investigation of just how the server is using the memory
you've allocated for it, and preferably add in some of the monitoring techniques
covered in later chapters, you'll be much better informed. A quick look inside of the
actual contents of the database buffer cache will answer all sorts of questions about
how the server is using memory, and be much more accurate for planning purposes
than guessing.

PostgreSQL allocates one large shared memory block on server startup to
cache reads and writes to database disk blocks.
This cache works in cooperation with, rather than, replacing the operating
system cache, and should be sized as only a moderate percentage of
total RAM.
The default shared memory allocation limits on many systems are extremely
low, and will need to be increased to allow proper shared memory sizing for
the database.
Crash recovery is done by writing full copies of the blocks being modified
to the WAL before changing the associated file on the database disk.
How far the back recovery must go in order to repair damage after a crash
moves forward as each checkpoint finishes.
Checkpoints need to be tuned carefully to move limit crash recovery time,
while not impacting the rest of the system's performance.
The pg_stat_bgwriter system view tracks how all buffers get into and out
of the buffer cache.
The pg_buffercache module can be used to see what's inside the shared
buffer cache, and this information can be used to determine if it's sized
too large or too small.

•

•

•

•

•

•

•

•

Server Configuration Tuning
The main tunable settings for PostgreSQL are in a plain text file named
postgresql.conf that's located at the base of the database directory structure.
This will often be where $PGDATA is set to on UNIX-like systems, making the file
$PGDATA/postgresql.conf on those platforms.

This chapter mirrors the general format of the official documentation's look at
these parameters at http://www.postgresql.org/docs/current/static/
runtime-config.html. However, it is more focused on guidelines for setting the
most important values, from the perspective of someone interested in performance
tuning, rather than describing the meaning of every parameter. This should be
considered a supplement to rather than a complete replacement for the extensive
material in the manual.

Another live resource related to this subject is the article "Tuning Your PostgreSQL
Server" at http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
which has some overlap with information covered here. The wiki structure of
that article makes it conducive to being kept current, so eventually it may include
details about future PostgreSQL versions not released at the point this chapter is
being written.

Interacting with the live configuration
There are many ways to change the database's parameters beyond just editing its
configuration file and restarting. Understanding these can be critical to reducing
server downtime just for routine configuration changes, as well as making sure
you're adjusting the parameter you want at the time when you want the change
to take effect.

Server Configuration Tuning

[126]

Defaults and reset values
The database has two things that you might refer to as a "default" depending on
your context. The first type of default is what the server will set the value to if you
don't ever change it—the setting the server starts with before it has even read the
postgresql.conf file. Starting in PostgreSQL 8.4, you can check this value using the
pg_settings view by looking at the boot_val column: http://www.postgresql.
org/docs/current/static/view-pg-settings.html.

Once the server has started, and you make changes to parameters there's also
a default value those parameters will return to if you use the RESET command
documented at http://www.postgresql.org/docs/current/static/sql-reset.
html to return them to their starting value. This is labeled as reset_val in the
pg_settings view.

Allowed change context
Every configuration setting has an associated context in which it's allowed to be
changed. The best way to determine the allowed change context for a setting is to ask
the database directly. The following example shows one entry with each context type
(the actual result if you run this query will include every server parameter):

postgres=# select name,context from pg_settings;

 name | context

----------------------------+------------

archive_command | sihup

archive_mode | postmaster

block_size | internal

log_connections | backend

log_min_duration_statement | superuser

search_path | user

The context field isn't documented very well in the official manual. Here are the
meanings of the various settings you'll find there, sorted from hardest to easiest
to change:

internal: These settings are mainly database internals set at compile time.
They're included in the view for your information, but cannot be changed
without recompiling the server.
postmaster: This is updated only when a full server restart is done. All
shared memory settings fall into this category.

•

•

Chapter 6

[127]

sighup: Sending the server a HUP signal will cause it to reload the
postgresql.conf and any changes made to this parameter will be
immediately active. See the next section for information about how to do this.
backend: These settings are similar to the sighup ones, except that the
changes made will not impact any already running database backend
sessions. Only new sessions started after this will respect the change.
There are very few parameters with this property; most impact behavior
only happens when backend sessions start or end. The last example,
log_connections, can't be made retroactive to log a connection that's
already been made. Only new connections made after log_connections
is enabled will be logged.
superuser: This can be modified by any database superuser (usually the
person who created the database and commonly "postgres") at any time,
and made active without even requiring a full configuration reload. Most of
the settings in this category relate to logging various aspects of statements
executed by the server.
user: Individual user sessions can adjust these parameters at any time.
Their changes will only impact that session. Most parameters here alter
how queries execute, which allows tweaking query execution on a
per-session basis.

As you might imagine from this list, the answer to a seemingly simple question like
"what's the current value of work_mem?" can have a very different answer depending
on when you ask and the context involved. It might be initially set to one value in
the postgresql.conf file, have the default changed to another by a configuration
reload, then be changed again by one backend adjusting its individual setting before
running a query.

Reloading the configuration file
There are three ways you can get the database to reload its configuration, to update
values in the sighup category. If you're connected to the database as a superuser,
pg_reload_conf will do that:

postgres=# SELECT pg_reload_conf();

 pg_reload_conf

 t

•

•

•

•

Server Configuration Tuning

[128]

You can send a HUP signal manually using the kill UNIX command:

$ ps -eaf | grep "postgres -D"

postgres 11185 1 0 22:21 pts/0 00:00:00 /home/postgres/inst/bin/
postgres -D /home/postgres/data/

$ kill -HUP 11185

Finally, you can trigger a SIGHUP signal for the server by using pg_ctl:

$ pg_ctl reload

server signaled

No matter which approach you use, you'll see the following in the database log files
afterwards, to confirm that the server received the message:

LOG: received SIGHUP, reloading configuration files

You can then confirm that your changes have taken place as expected using
commands like SHOW or looking at pg_settings.

Commented out settings
What happens when you had something that was set manually but then you disable
it on a running server? It depends on the version you're running. Let's say your
postgresql.conf file started with the following setting active:

checkpoint_segments = 30

You now edit the file to comment that setting out:

#checkpoint_segments = 30

And then tell the server to re-read the configuration file:

$ pg_ctl reload

checkpoint_segments is a sighup context setting. Starting with PostgreSQL 8.3, this
change will return the value back to the server default (boot_val). And as of Version
9.0, you'll also get a note in the log file about that:

LOG: received SIGHUP, reloading configuration files

LOG: parameter "checkpoint_segments" removed from configuration file,
reset to default

Chapter 6

[129]

You can confirm the default setting look using SHOW:

$ psql -x -c "show checkpoint_segments"

-[RECORD 1]-------+--

checkpoint_segments | 3

But if you are running PostgreSQL 8.2 or earlier, what would have happened instead is
that there would be no change: checkpoint_segments would still be 30. Only after the
server was completely restarted would the return to the default value of 3 happen.

Because this behavior is both complicated and version-dependent, experienced
PostgreSQL administrators will usually double-check parameters they intended
to change afterwards using the SHOW statement or by looking at pg_settings,
to make sure the settings match what was expected.

Another complicated area here is that it's possible to include additional configuration
files from inside of the master postgresql.conf. These effectively work as if you'd
inserted the text of the file into the spot you included it. You can see the file any
setting originated from using pg_settings in this case, along with what line the
active version came from. Also note that if you set a parameter more than once,
only the last setting matters in any case.

Server-wide settings
While in some cases these parameters might be adjustable in other contexts,
generally the ones in this section are only adjusted in the postgresql.conf before
the server is started.

Database connections
There are many configuration parameters that control how people can connect
remotely and locally to the database. The complete list is documented at http://
www.postgresql.org/docs/current/static/runtime-config-connection.html.

listen_addresses
Any installation that requires connecting from a remote system will need to change
listen_addresses to allow that. The default only allows local connections from
users logged into the same system as the database server. A common approach is to
accept incoming connections from anywhere, as far as the primary configuration file
is concerned, like this:

listen_addresses = '*'

Server Configuration Tuning

[130]

And then setup the pg_hba.conf file described at http://www.postgresql.
org/docs/current/static/auth-pg-hba-conf.html to control who can actually
connect. There is a potential performance concern to this approach, in that filtering
out connections using a more focused setting for listen_addresses can be more
efficient than letting clients connect. If you let a client connect and then validate them
against pg_hba.conf, which uses some additional service resources, and introduces
the possibility for a malicious user to launch a denial-of-service attack via this route.

In practice, few PostgreSQL servers are directly exposed to internet-wide queries
anyway. Normally you'd filter out the default port for PostgreSQL (5432) at the
firewall-level to handle this level of security, which is the most efficient approach
and a common implementation shared for securing other applications too. If you
have a system that's exposed to the world, which is increasingly common for
situations like Cloud-hosted databases, make sure to use all three layers of defense.
Restrict who can connect at the firewall-level; reduce what addresses you listen on if
practical; and lock down who can get access to the database using pg_hba.conf.

max_connections
One of the settings that you'll always find set to a value, typically 100, in the
postgresql.conf generated by initdb is max_connections. As each connection
uses a small amount of shared memory, as described in the previous chapter,
it's possible for systems with particularly limited shared-memory defaults to not
even allow these many connections. Accordingly, like shared_buffers, some
investigation is done when the database cluster is created and then the largest value
supported—up to 100—is saved into the default configuration. In practice, the
amount of non-shared memory each client uses for things like sorting will dwarf
this but the shared component can't be completely ignored.

It is important not to set this parameter to a value much higher than you need it
to set. There are several downsides to larger settings. The first is wasted shared
memory, typically the last of the things to be concerned about as the amount per
connection is small.

There are other resources a client can use however, with memory allocations for
sorting (controlled via work_mem, covered in the following section) normally the
largest. If a large number of connections are allowed, to be safely conservative
these settings must be made smaller too, so that the potential for excess resource
use is limited.

Chapter 6

[131]

Windows PostgreSQL servers can be extremely limited in the number of
connections they support due to resource allocation issues. It's common
for only about 125 connections to be possible before running out of
memory in the Desktop Heap area. For more details about this issue and
potential workarounds for it, see:
http://wiki.postgresql.org/wiki/Running_&_Installing_
PostgreSQL_On_Native_Windows

Finally, establishing connections in PostgreSQL should be considered a resource
intensive operation. It is not a goal of the database server for the acts of establishing
a database connection, authenticating, and reaching the point where a query can
be executed to be a lightweight operation. Generally connection overhead starts to
become a bottleneck on general server operation after several hundred connections;
the exact threshold varies depending on hardware and configuration. Certainly if
you intend to support thousands of queries at once, you cannot do that by allowing
each client to connect the database directly. Putting connection pooling software
between the application and the database is the common way to handle this
scalability limitation, and that topic is covered in a Chapter 13, Pooling and Caching.

Shared memory
The shared memory settings are important to get right because they will always
require a full database restart to change—the server cannot re-allocate shared
memory dynamically.

shared_buffers
Setting shared_buffers usefully was the topic of most of the last chapter.

Free space map (FSM) settings
Space left behind from deletions or updates of data is placed into a free space map by
VACUUM, and then new allocations are done from that free space first, rather than by
allocating new disk for them instead.

Server Configuration Tuning

[132]

Starting in PostgreSQL 8.4, the FSM is stored on disk, and therefore scales in size
automatically. In PostgreSQL versions up to 8.3, the FSM was stored in shared
memory, which required monitoring how much of it was being used potentially
increasing it in size. Making sure the FSM settings in the configuration file such
as max_fsm_pages and max_fsm_relations are sufficient should be part if your
regular system maintenance on these versions. This can be run manually or by
executing VACUUM VERBOSE to measure its current use in more automatic scripted
form. More about this subject appears in Chapter 5, Memory for Database Caching, and
it's a major focus of Chapter 7, Routine Maintenance.

Logging
General logging setup is important but it is somewhat outside the scope of this
book. You may need to set parameters such as log_destination, log_directory,
and log_filename to save your log files in a way compatible with the system
administrations requirements of your environment. These will all be set to reasonable
defaults to get started with on most systems. Chapter 7, Routine Maintenance, will cover
adjustments to these for CSV logging, which can be helpful for analyzing query timing.

On UNIX-like systems, it's common for some of the database logging to be set in the
script that starts and stops the server, rather than directly in the postgresql.conf
file. If you instead use the pg_ctl command to manually start the server, you may
discover that logging ends up on your screen instead. You'll need to look at the script
that starts the server normally (commonly /etc/init.d/postgresql) to determine
what it does, if you want to duplicate that behavior. In most cases, you just need
to add –l logfilename to the pg_ctl command line to redirect its output to the
standard location.

log_line_prefix
The default log_line_prefix is empty, which is not what you want. A good
starting value here is the following:

log_line_prefix='%t:%r:%u@%d:[%p]: '

This will put the following into every log line:

%t: Timestamp
%u: Database user name
%r: Remote host connection is from
%d: Database connection is to
%p: Process ID of connection

•

•

•

•

•

Chapter 6

[133]

It may not be obvious what you'd want all of these values for initially, particularly,
the process ID. Once you've tried to chase down a few performance issues, the need
for saving these values will be more obvious, and you'll be glad to already have this
data logged.

Another approach worth considering is setting log_line_prefix such that the
resulting logs will be compatible with the pgFouine program, described in Chapter 7,
Routine Maintenance. That is a reasonable, general purpose logging prefix, and many
sites end up needing to do some sort of query analysis eventually.

log_statement
The options for this setting are as follows:

none: Do not log any statement-level information.
ddl: Log only Data Definition Language (DDL) statements such as
CREATE and DROP. This can normally be left on even in production, and
is handy to catch major changes introduced accidentally or intentionally
by administrators.
mod: Log any statement that modifies a value, which is essentially everything
except for simple SELECT statements. If your workload is mostly SELECT
based with relatively few data changes, this may be practical to leave enabled
all the time.
all: Log every statement. This is generally impractical to leave on in
production due to the overhead of the logging. However, if your server is
powerful enough relative to its workload, it may be practical to keep it on
all the time.

Statement logging is a powerful technique for finding performance issues. Analyzing
the information saved by log_statement and related sources for statement-level
detail can reveal the true source for many types of performance issues. You will
need to combine this with appropriate analysis tools, which is covered in the
Chapter 7, Routine Maintenance.

log_min_duration_statement
Once you have some idea of how long a typical query statement should take to
execute, this setting allows you to log only the ones that exceed some threshold
you set. The value is in milliseconds, so you might set:

log_min_duration_statement=1000

•

•

•

•

Server Configuration Tuning

[134]

And then you'll only see statements that take longer than one second to run. This can
be extremely handy for finding out the source of "outlier" statements that take much
longer than most to execute.

If you are running 8.4 or later, you might instead prefer to use the auto_explain
module: http://www.postgresql.org/docs/8.4/static/auto-explain.html
instead of this feature. This will allow you to actually see why the queries that are
running slowly are doing so, by viewing their associated EXPLAIN plans.

Vacuuming and statistics
PostgreSQL databases require two primary forms of regular maintenance as data is
added, updated, and deleted.

VACUUM cleans up after old transactions, including removing information that is no
longer visible and returning freed space to where it can be re-used. The more often
you UPDATE and DELETE information from the database, the more likely you'll need
a regular vacuum cleaning regime. However, even static tables with data that never
changes once inserted still need occasional care here.

ANALYZE looks at tables in the database and collects statistics about them— information
like estimates of how many rows they have and how many distinct values are in there.
Many aspects of query planning depend on this statistics data being accurate.

There's more about VACUUM in Chapter 7, Routine Maintenance, and the use of statistics
is covered as part of Chapter 10, Query Optimization.

autovacuum
As both these tasks are critical to database performance over the long-term, starting
in PostgreSQL 8.1 there is an autovacuum daemon available that will run in the
background to handle these tasks for you. Its action is triggered by the number of
changes to the database exceeding a threshold it calculates based on the existing
table size.

The parameter for autovacuum is turned on by default in PostgreSQL 8.3, and the
default settings are generally aggressive enough to work out of the box for smaller
database with little manual tuning. Generally you just need to be careful that the
amount of data in the free space map doesn't exceed max_fsm_pages, and even
that requirement is automated away from being a concern as of 8.4.

Chapter 6

[135]

Enabling autovacuum on older versions
If you have autovacuum available but it's not turned on by default, which will be the
case with PostgreSQL 8.1 and 8.2, there are a few related parameters that must also
be enabled for it to work, as covered in http://www.postgresql.org/docs/8.1/
interactive/maintenance.html or http://www.postgresql.org/docs/8.2/
interactive/routine-vacuuming.html.

The normal trio to enable in the postgresql.conf file in these versions are:

stats_start_collector=true
stats_row_level=true
autovacuum=on

Note that as warned in the documentation, it's also wise to consider adjusting
superuser_reserved_connections to allow for the autovacuum processes in
these earlier versions.

The autovacuum you'll get in 8.1 and 8.2 is not going to be as efficient as what comes
in 8.3 and later. You can expect it to take some fine tuning to get the right balance
of enough maintenance without too much overhead, and because there's only a
single worker it's easier for it to fall behind on a busy server. This topic isn't covered
at length here. It's generally a better idea to put time into planning an upgrade to
a PostgreSQL version with a newer autovacuum than to try and tweak an old one
extensively, particularly if there are so many other performance issues that cannot
be resolved easily in the older versions, too.

maintainance_work_mem
A few operations in the database server need working memory for larger operations
than just regular sorting. VACUUM, CREATE INDEX, and ALTER TABLE ADD FOREIGN
KEY all can allocate up to maintainance_work_mem worth of memory instead. As
it's unlikely that many sessions will be doing one of these operations at once, it's
possible to set this value much higher than the standard per-client work_mem setting.
Note that at least autovacuum_max_workers (defaulting to 3 starting in version 8.3)
will allocate this much memory, so consider those sessions (perhaps along with a
session or two doing a CREATE INDEX) when setting this value.

Assuming you haven't increased the number of autovacuum workers, a typical
high setting for this value on a modern server would be at five percent of the total
RAM, so that even five such processes wouldn't exceed a quarter of available
memory. This works out to approximately 50 MB of maintainance_work_mem
per GB of server RAM.

Server Configuration Tuning

[136]

default_statistics_target
PostgreSQL makes its decisions about how queries execute based on statistics
collected about each table in your database. This information is collected by
analyzing the tables, either with the ANALYZE statement or via autovacuum doing
that step. In either case, the amount of information collected during the analyze step
is set by default_statistics_target. Increasing this value makes analysis take
longer, and as analysis of autovacuum happens regularly this turns into increased
background overhead for database maintenance. But if there aren't enough statistics
about a table, you can get bad plans for queries against it.

The default value for this setting used to be the very low (that is,10), but was
increased to 100 in PostgreSQL 8.4. Using that larger value was popular in earlier
versions, too, for general improved query behavior. Indexes using the LIKE operator
tended to work much better with values greater than 100 rather than below it, due
to a hard-coded change at that threshold.

Note that increasing this value does result in a net slowdown on your system if
you're not ever running queries where the additional statistics result in a change
to a better query plan. This is one reason why some simple benchmarks show
PostgreSQL 8.4 as slightly slower than 8.3 at default parameters for each, and in
some cases you might return an 8.4 install to a smaller setting. Extremely large
settings for default_statistics_target are discouraged due to the large
overhead they incur.

If there is just a particular column in a table you know that needs better statistics,
you can use ALTER TABLE SET STATISTICS on that column to adjust this setting
just for it. This works better than increasing the system-wide default and making
every table pay for that requirement. Typically, the columns that really require a lot
more statistics to work properly will require a setting near the maximum of 1000
(increased to 10,000 in later versions) to get a serious behavior change, which is
far higher than you'd want to collect data for on every table in the database.

Checkpoints
The mechanics of how checkpoints worked were covered in the previous chapter,
along with the principle tunables involved. Discussion here will focus mainly on
common practice for initially setting these values.

Chapter 6

[137]

checkpoint_segments
Each WAL segment takes up 16 MB. As described at http://www.postgresql.org/
docs/current/interactive/wal-configuration.html the maximum number of
segments you can expect to be in use at any time is:

(2 + checkpoint_completion_target) * checkpoint_segments + 1

Note that in PostgreSQL versions before 8.3 that do not have spread checkpoints,
you can still use this formula, just substitute the following code snippet for the value
you'll be missing:

checkpoint_completion_target=0

The easiest way to think about the result is in terms of the total size of all the WAL
segments that you can expect to see on disk, which has both a disk cost and serves as
something that can be used to estimate the time for recovery after a database crash.
The expected peak pg_xlog size grows as shown in the following table:

checkpoint_
segments

checkpoint_
completion_target=0

target=0.5 target=0.9

3 112MB 144MB 160MB
10 336MB 416MB 480MB
32 1040MB 1296MB 1504MB
64 2064MB 2576MB 2992MB
128 4112MB 5136MB 5968MB
256 8208MB 10256MB 11904MB

The general rule of thumb you can extract here is that for every 32 checkpoint
segments, expect at least 1 GB of WAL files to accumulate. As database crash
recovery can take quite a while to process even that much data, 32 is as high as you
want to make this setting for anything but a serious database server. The default
of 3 is very low for most systems though; even a small install should consider an
increase to at least 10.

Normally, you'll only want a value greater than 32 on a smaller server when doing
bulk-loading, where it can help performance significantly and crash recovery isn't
important. Databases that routinely do bulk loads may need a higher setting.

Server Configuration Tuning

[138]

checkpoint_timeout
The default for this setting of 5 minutes is fine for most installations. If your system
isn't able to keep up with writes and you've already increased checkpoint_
segments to where the timeout is the main thing driving when checkpoints happen,
it's reasonable to consider an increase to this value. Aiming for 10 minutes or more
between checkpoints isn't dangerous; again it just increases how long database
recovery after a crash will take. As this is one component to database server
downtime after a crash, that's something you need a healthy respect for.

checkpoint_completion_target
If you have increased checkpoint_segments to at least 10, it's reasonable at that point
to also increase checkpoint_competion_target to its practical maximum of 0.9. This
gives maximum checkpoint spreading, which theoretically means the smoothest I/O,
too. In some cases keeping the default of 0.5 will still be better however, as it makes it
less likely that one checkpoint's writes will spill into the next one.

It's unlikely that a value below 0.5 will be very effective at spreading checkpoints at
all. Moreover, unless you have an extremely large value for the number of segments
the practical difference between small changes in its value are unlikely to matter.
One approach for the really thorough is to try both 0.5 and 0.9 with your application
and see which one gives the smoother disk I/O curve over time, as judged by
OS-level monitoring.

WAL settings
The PostgreSQL Write-Ahead Log (WAL) was described in Chapter 5, Memory for
Database Caching.

wal_buffers
While the documentation on wal_buffers suggests that the default of 64 KB is
sufficient as long as no single transaction exceeds that value, in practice write-heavy
benchmarks see optimal performance at higher values than you might expect from
that, at least 1 MB or more. With the only downside being the increased use of shared
memory, and as there's no case where more than a single WAL segment could need
to be buffered, given modern server memory sizes the normal thing to do nowadays
is to just set:

wal_buffers=16MB

Then forget about it as a potential bottleneck or item to tune further. Only if you're
tight on memory should you consider a smaller setting.

Chapter 6

[139]

wal_sync_method
The Chapter 2, Database Hardware, touched on the importance of setting up your
server to avoid volatile write-back caches. One purpose of wal_sync_method is
to tune such caching behavior.

The default behavior here is somewhat different from most of the options. When the
server source code is compiled, a series of possible ways to write are considered. The
one believed most efficient then becomes the compiled-in default. This value is not
written to the postgresql.conf file at initdb time though, making it different from
other auto-detected, platform-specific values such as shared_buffers.

Before adjusting anything, you should check what your platform detected as the
fastest safe method using SHOW; the following is a Linux example:

postgres=# show wal_sync_method;

 wal_sync_method

 fdatasync

On both Windows and the Mac OS X platforms, there is a special setting to make
sure the OS clears any write-back caches. The safe value to use on these platforms
that turns on this behavior is as follows:

wal_sync_method=fsync_writethrough

If you have this setting available to you, you really want to use it! It does exactly the
right thing to make database writes safe, while not slowing down other applications
the way disabling an entire hard drive write cache will do.

This setting will not work on all platforms however. Note that you will see a
performance drop going from the default to this value, as is always the case when
going from unsafe to reliable caching behavior.

On other platforms, tuning wal_sync_method can be much more complicated. It's
theoretically possible to improve write throughput on any UNIX-like system by
switching from any write method that uses a write/fsync or write/fdatasync
pair to using a true synchronous write. On platforms that support safe DSYNC write
behavior, you may already see this as your default when checking it with SHOW:

wal_sync_method=open_datasync

Server Configuration Tuning

[140]

Even though, you won't see it explicitly listed in the configuration file as such. If this
is the case on your platform, there's little optimization beyond that you can likely
perform. open_datasync is generally the optimal approach, and when available it
can even use direct I/O as well to bypass the operating system cache.

The Linux situation is perhaps the most complicated. As shown in the last code, this
platform will default to fdatasync as the method used. It is possible to switch this
to use synchronous writes with:

wal_sync_method=open_sync

Also, in many cases you can discover this is faster—sometimes much faster—than
the default behavior. However, whether this is safe or not depends on your
filesystem. The default filesystem on most Linux systems, ext3, does not handle
O_SYNC writes safely in many cases, which can result in corruption. See "PANIC
caused by open_sync on Linux" at http://archives.postgresql.org/pgsql-
hackers/2007-10/msg01310.php for an example of how dangerous this setting
can be on that platform. There is evidence that this particular area has finally been
cleaned up on recent (2.6.32) kernels when using the ext4 filesystem instead, but
this has not been tested extensively at the database level yet.

In any case, your own tests of wal_sync_method should include the "pull the cord"
test, where you power the server off unexpectedly, to make sure you don't lose any
data with the method you've used. Testing at a very high load for a long period of
time is also advisable, to find intermittent bugs that might cause a crash.

PITR and WAL Replication
The archive_mode, archive_command, and archive_timeout settings are discussed
in Chapter 14, Scaling with Replication.

Per-client settings
While all of the settings in this section can be adjusted per client, you'll still want
good starting settings for these parameters in the main configuration file. Individual
clients that need values outside the standard can always do so using the SET
command within their session.

Chapter 6

[141]

effective_cache_size
As mentioned in the last chapter, PostgreSQL is expected to have both its own
dedicated memory (shared_buffers) as well as utilize the filesystem cache. In some
cases, when making decisions like whether it is efficient to use an index or not, the
database compares sizes it computes against the effective sum of all these caches;
that's what it expects to find in effective_cache_size.

The same rough rule of thumb that would put shared_buffers at 25 percent of
system memory would set effective_cache_size to between 50 and 75 percent of
RAM. To get a more accurate estimate, first observe the size of the filesystem cache:

UNIX-like systems: Add the free and cached numbers shown by the free
or top commands to estimate the filesystem cache size
Windows: Use the Windows Task Manager's Performance tab and look at
the System Cache size

Assuming you have already started the database, you need to then add the shared_
buffers figure to this value to arrive at a figure for effective_cache_size. If the
database hasn't been started yet, usually the OS cache will be an accurate enough
estimate, when it's not running. Once it is started, most of the database's dedicated
memory will usually be allocated to its buffer cache anyway.

effective_cache_size does not allocate any memory. It's strictly used as input
on how queries are executed, and a rough estimate is sufficient for most purposes.
However, if you set this value much too high, actually executing the resulting
queries may result in both the database and OS cache being disrupted by reading in
the large number of blocks required to satisfy the query believed to fit easily in RAM.

It's rare you'll ever see this parameter tuned on a per-client basis, even though it
is possible.

synchronous_commit
In Chapter 2, Database Hardware, the overhead of waiting for physical disk commits
was stressed as a likely bottleneck for committing transactions. If you don't have
a battery-backed write cache to accelerate that, but you need better commit speed,
what can you do? The standard approach is to disable synchronous_commit,
which is sometimes alternately referred to as enabling asynchronous commits.
This groups commits into chunks at a frequency determined by the related
wal_writer_delay parameter. The default settings guarantee a real commit to disk
at most 600 milliseconds after the client commit. During that window, which you
can reduce in size with a corresponding decrease in speed-up, that data will not be
recovered afterwards if your server crashes.

•

•

Server Configuration Tuning

[142]

Note that it's possible to turn this parameter off for a single client during its session
rather than making it a server-wide choice:

SET LOCAL synchronous_commit TO OFF;

This provides you with the option of having different physical commit guarantees
for different types of data you put into the database. A routine activity monitoring
table, one that was frequently inserted into and where a fraction of a second of loss
is acceptable, would be a good candidate for asynchronous commit. An infrequently
written table holding real-world monetary transactions should prefer the standard
synchronous commit.

work_mem
When a query is running that needs to sort data, the database estimates how much
data is involved and then compares it to the work_mem parameter. If it's larger (and
the default is only 1 MB), rather than sorting in memory it will write all the data out
and use a disk-based sort instead. This is much, much slower than a memory based
one. Accordingly, if you regularly sort data, and have memory to spare, a large
increase in work_mem can be one of the most effective ways to speed up your server.
A data warehousing report might on a giant server run with a gigabyte of work_mem
for its larger reports.

The catch is that you can't necessarily predict the number of sorts any one client will
be doing, and work_mem is a per-sort parameter rather than a per-client one. This
means that memory use via work_mem is theoretically unbounded, where a number
of clients sorting large enough things to happen concurrently.

In practice, there aren't that many sorts going on in a typical query, usually only
one or two. And not every client that's active will be sorting at the same time. The
normal guidance for work_mem is to consider how much free RAM is around after
shared_buffers is allocated (the same OS caching size figure needed to compute
effective_cache_size), divide by max_connections, and then take a fraction of
that figure; a half of that would be an aggressive work_mem value. In that case, only
if every client had two sorts active all at the same time would the server be likely
to run out of memory, which is an unlikely scenario.

The work_mem computation is increasingly used in later PostgreSQL versions for
estimating whether hash structures can be built in memory. Its use as a client,
memory size threshold is not limited just to sorts. That's simply the easiest way
to talk about the type of memory allocation decision it helps to guide.

Like synchronous_commit, work_mem can also be set per-client. This allows an
approach where you keep the default to a moderate value, and only increase sort
memory for the clients that you know are running large reports.

Chapter 6

[143]

random_page_cost
This parameter is common to tune, but explaining what it does requires a lot of
background about how queries are planned. That will be covered in the Chapter 10,
Query Optimization. Particularly in earlier PostgreSQL versions, lowering this value
from its default—for example, a reduction from 4.0 to 2.0—was a common technique.
It was used for making it more likely that the planner would use indexed queries
instead of the alternative of a sequential scan. With the smarter planner in current
versions, this is certainly not where you want to start tuning at. You should prefer
getting better statistics and setting the memory parameters as primary ways
to influence the query planner.

constraint_exclusion
If you are using PostgreSQL 8.3 or earlier versions, and you are using the database's
table inheritance feature to partition your data, you'll need to turn this parameter on.
The reasons for that are covered in Chapter 15, Partitioning Data.

Starting in 8.4, constraint_exclusion defaults to a new smarter setting named
partition that will do the right thing in most situations without it ever needing
to be adjusted.

Tunables to avoid
There are a few parameters in the postgesql.conf that have gathered up poor
guidance in other guides you might come across, and they might already be set
badly in a server whose configuration you're now responsible for. Others have
names suggesting a use for the parameter that actually doesn't exist. This section
warns you about the most common of those to avoid adjusting.

fsync
If you just want to ignore crash recovery altogether, you can do that by turning off
the fsync parameter. This makes the value for wal_sync_method irrelevant, because
the server won't be doing any WAL sync calls anymore.

It is important to recognize that if you have any sort of server crash when fsync
is disabled, it is likely your database will be corrupted and no longer start
afterwards. Despite this being a terrible situation to be running a database under,
the performance speedup of turning crash recovery off is so large that you might
come across suggestions you disable fsync anyway. You should be equally hesitant
to trust any other advice you receive from sources suggesting this, as it is an
unambiguously dangerous setting to disable.

Server Configuration Tuning

[144]

One reason this idea gained traction is that in earlier PostgreSQL versions, there was
no way to reduce the number of fsync calls to a lower number—to trade-off some
amount of reliability for performance. Starting 8.3, in most cases where people used
to disable fsync it's a better idea to turn off synchronous_commit instead.

There is one case where fsync=off may still make sense: initial bulk loading. If
you're inserting a very large amount of data into the database, and do not have
hardware with a battery-backed write cache, you might discover this takes far too
long to ever be practical. In this case, turning the parameter off during the load—
where all data can easily be recreated if there is a crash causing corruption—may
be the only way to get loading time below your target. Once your server is back up
again, you should turn it right back on again.

Some systems will also turn off fsync on servers with redundant copies of the
database— for example, slaves used for reporting purposes. These can always
resynchronize against the master if their data gets corrupted.

full_page_writes
Much like fsync, turning this parameter off increases the odds of database
corruption in return for an increase in performance. You should only consider
adjusting this parameter if you're doing extensive researching into your filesystem
and hardware, in order to assure partial page writes do not happen.

commit_delay and commit_siblings
Before synchronous_commit was implemented, there was an earlier attempt to add
that sort of feature enabled by the commit_delay and commit_siblings parameters.
These are not effective parameters to tune in most cases. It is extremely difficult to
show any speedup by adjusting them, and quite easy to slow every transaction down
by tweaking them. The only case where they have shown some value is for extremely
high I/O rate systems. Increasing the delay to a very small amount can make writes
happen in bigger blocks, which sometimes turn out better aligned when combined
with larger RAID stripe sizes in particular.

max_prepared_transactions
Many people see this name and assume that as they use prepared statements, a
common technique to avoid SQL injection, that they need to increase this value.
This is not the case; the two are not related. A prepared transaction is one that uses
PREPARE TRANSACTION for two-phase commit (2PC). If you're not specifically using
that command and 2PC, you can leave this value at its default. If you are using
those features, only then will you likely need to increase it to match the number
of connections.

Chapter 6

[145]

Query enable parameters
It's possible to disable many of the query planner's techniques, in hopes of avoiding
a known bad type of query. This is sometimes used as a work-around for the fact
that PostgreSQL doesn't support direct optimizer hints for how to execute a query.
You might see the following code snippet, suggested as a way to force use of indexes
instead of sequential scans for example:

enable_seqscan = off

Generally this is a bad idea, and you should improve the information the query
optimizer is working with so it makes the right decisions instead. This topic is
covered in Chapter 10, Query Optimization.

New server tuning
There are a few ways to combine all of this information into a process for tuning
a new server. Which is the best is based on what else you expect the server to be
doing, along with what you're looking to adjust yourself versus taking rule of
thumb estimates for.

Dedicated server guidelines
Initial server tuning can be turned into a fairly mechanical process:

1. Adjust the logging default to be more verbose.
2. Determine how large to set shared_buffers to. Start at 25 percent of system

memory. Considering adjusting upward if you're on a recent PostgreSQL
version with spread checkpoints and know your workload benefits from
giving memory directory to the buffer cache. If you're on a platform where this
parameter is not so useful, limit its value or adjust downward accordingly.

3. Estimate your maximum connections generously, as this is a hard limit;
clients will be refused connection once it's reached.

4. Start the server with these initial parameters. Note how much memory is still
available for the OS filesystem cache.

5. Adjust effective_cache_size based on shared_buffers plus the
OS cache.

6. Divide the OS cache size by max_connections, then by two. This gives you
an idea of a maximum reasonable setting for work_mem. If your application is
not dependent on sort performance, a much lower value than that would be
more appropriate.

Server Configuration Tuning

[146]

7. Set maintenance_work_mem to around 50 MB per GB of RAM.
8. Increase checkpoint_segments to at least 10. If you have server-class

hardware with a battery-backed write cache, a setting of 32 would be a
better default.

9. If you're using a platform where the default wal_sync_method is unsafe,
change it to one that is.

10. Increase wal_buffers to 16 MB.
11. For PostgreSQL versions before 8.4, consider increases to both

default_statistics_target (to 100, the modern default) and
max_fsm_pages based on what you know about the database workload.

Once you've setup some number of servers running your type of applications, you
should have a better idea what kind of starting values make sense to begin with. The
values for checkpoint_segments and work_mem in particular can end up being very
different from what's suggested here.

Shared server guidelines
If your database server is sharing hardware with another use, particularly the common
situation where a database-driven application is installed on the same system, you
cannot be nearly as aggressive in your tuning as described in the last section. An exact
procedure is harder to outline. What you should try to do is use tuning values for the
memory-related values on the low side of recommended practice:

Only dedicate 10 percent of RAM to shared_buffers at first, even on
platforms where more would normally be advised
Set effective_cache_size to 50 percent or less of system RAM, perhaps
less if you know your application is going to be using a lot of it
Be very stingy about increases to work_mem

The other suggestions in the above section should still hold—using larger values for
checkpoint_segments and considering the appropriate choice of wal_sync_method,
for example, are no different on a shared system than on a dedicated one.

Then, simulate your application running with a full-sized workload, and then
measure available RAM to see if more might be suitable to allocate toward the
database. This may be an iterative process, and it certainly should be matched with
application-level benchmarking if possible. There's no sense in giving memory to
the database on a shared system if the application, or another layer of caching such
as at the connection pooler level, would use it more effectively. That same idea—get
reasonable starting settings and tune iteratively based on monitoring—works well
for a dedicated server, too.

•

•

•

Chapter 6

[147]

pgtune
Starting with PostgreSQL 8.4, the pgtune program available from http://
pgfoundry.org/projects/pgtune/ can be used to create an initial postgresql.
conf file for a new server. It allows you to suggest what the intended type of
workload is, ranging from a dedicated data warehouse server down to a developer
workstation. Based on that input and system parameters like the amount of RAM
in the server, it produces a tuned configuration for the major system parameters
following similar methods to those described in this chapter. This is not going to
be as accurate as following the guidelines for a dedicated server and measuring
everything yourself, but it will get you up and running with a configuration that's
in the right general size very quickly. Any reasonably sized postgresql.conf
should easily outperform the default one, as that's optimized only for low
shared memory use.

Summary
There are almost 200 values you might adjust in a PostgreSQL database's
configuration, and getting them all right for your application can be quite a project.
The guidelines here should get you into the general area where you should start
at though, avoid the most common pitfalls, and give you an idea what settings are
more likely to be valuable when you do run into trouble.

The default values in the server configuration file are very short on logging
information and have extremely small memory settings. Every server
should get at least a basic round of tuning to work around the worst
of the known issues.
The memory-based tunables, primarily shared_buffers and work_mem,
need to be adjusted carefully and in unison to make sure your system doesn't
run out of memory altogether.
The query planner needs to know about the memory situation and have good
table statistics in order to make accurate plans.
The autovacuum process is also critical to make sure the query planner
has the right information to work with, as well as to keep tables
maintained properly.
In many cases, the server does not need to be restarted to make a
configuration change, and many parameters can even be adjusted
on a per-client basis for really fine-tuning.

•

•

•

•

•

Routine Maintenance
PostgreSQL aims to be easy to maintain. But like any database, heavy activity can
lead to a drop in performance due to overhead. The approach taken to handle
concurrent read and write scalability in the database can leave behind significant
amounts of data that needs to be cleaned up properly. Understanding why that
happens is valuable for modeling just how often related maintenance needs to occur.
Another aspect of maintaining any database server is monitoring how well the
queries it runs execute.

Transaction visibility with multiversion
concurrency control
One design decision any database needs to make is how to handle the situation
where multiple clients might be interacting with the same data. PostgreSQL uses
a popular approach called Multiversion Concurrency Control (MVCC) to handle
this job. MVCC is also used in BerkeleyDB, Sybase SQL Anywhere, Oracle, and
many other database products; it's a general technique and not something specific
to PostgreSQL. The introduction to MVCC in the documentation at http://www.
postgresql.org/docs/current/static/mvcc-intro.html makes the concept
sound more complicated than it is. It's easier to understand with some simple
examples, which we'll go through shortly.

Visibility computation internals
Understanding how this is implemented in the server is helpful both to help
predict how statements will act, and so that you can interpret the diagnostic
information available.

Routine Maintenance

[150]

As transactions are created in the database, PostgreSQL advances a transaction ID
counter, usually just called the XID, to keep track of them. When you insert a row
into the database, or update an existing row, the new row created by that operation
saves the session's transaction ID into a field named the insertion XID, also referred
to as the xmin. This is the minimum XID capable of seeing this bit of information,
once it's been committed.

When a query or statement starts (tracking at either granularity can happen
depending on what mode you're in—more on this later), it notes the current
transaction ID as a hard line for what it should consider visible. As rows are
considered for inclusion in the query results, if they are committed and their
insertion xmin is less than that number, they show up in the query.

A similar mechanism handles deletion. Each row has a delete XID, also referred to as
the xmax, that starts as blank to indicate the row is live. When you delete a row, the
current transaction ID becomes its xmax, to say it should no longer be visible after
that point in time (or technically that point in transaction history). As queries that are
running consider rows for visibility, they note any non-blank xmax, and only include
the row if the commit of that deletion happened before the query's start XID.

The xmin and xmax are essentially the visibility lifetime of the row in transaction
ID terms. The row is only visible from the perspective of a query whose transaction
number is between those two values. What you might not expect is that you can
actually look at most of these internal details to see how they work as you run
experiments, including the current transaction ID (txid_current) and the
xmin/xmax data for every row you can see.

The computations are actually a bit more complicated than this,
because they also consider the transactions that were in progress
when the query was started too. You can see exactly what the
information is saved by a query to do its visibility computations
by using the txid_current_snapshot() function.

Updates
Let's create a simple table with one row in it to get started.

The first two lines in the following code are duplicated from
Chapter 5, Memory for Database Caching. If you've already
created them there, you should DROP TABLE t before this
session to clear them out.

Chapter 7

[151]

$ psql -c "CREATE TABLE t (s SERIAL, i INTEGER);"

$ psql -c "INSERT into t(i) values (0)"

INSERT 0 1

$ psql -c "SELECT *,xmin,xmax from t;"

 s | i | xmin | xmax

---+---+--------+------

 1 | 0 | 158208 | 0

$ psql -c "SELECT txid_current();

 txid_current

 158209

So there's the new row inserted, with the transaction ID xmin active for the statement
that inserted it. There's no maximum yet because nothing has ever updated or
deleted this row.

Now run psql, start a transaction with BEGIN, and update the row—but don't
commit it yet:

$ psql

postgres=# BEGIN;

BEGIN

postgres=# select txid_current();

 txid_current

 158210

postgres=# UPDATE t SET i=100 WHERE s=1;

UPDATE 1

gsmith=# SELECT *,xmin,xmax from t;

 s | i | xmin | xmax

---+-----+--------+------

 1 | 100 | 158210 | 0

From the perspective of this session, the row has been changed. But since it has not
been committed yet, other sessions will not see it. You can prove that by connecting
to the database from another client session, and looking at t; it will still show the
original value:

$ psql -c "SELECT *,xmin,xmax FROM t"

 s | i | xmin | xmax

---+---+--------+--------

 1 | 0 | 158208 | 158210

Routine Maintenance

[152]

But it already knows that once transaction 158210 commits, this version of the
row is obsolete.

This behavior is the essence of MVCC: each database client session is allowed to
make changes to a table, but they don't become visible to other sessions until the
transaction commits. And even after that point, sessions which are already open will
not normally see that change until they are finished. Similarly, once a session starts
a transaction, it's blind to most changes made to the database after that point, and
its own changes are kept private until it commits. And even those aren't considered
final even in the session that made the change—if you ROLLBACK its transaction, the
original values better be still around to return to. In this case, even though the last
row here is shown with a lifetime ending with an xmax of 158210, if that transaction
rolls back, it doesn't matter.

As you might guess from studying the example, the server actually makes a
second row on disk when you issue an UPDATE. Obviously the original one can't be
overwritten given this behavior. It has no choice but to duplicate the original row,
apply the update, and then save this new version. The change from old to new
version is marked with a transaction identification number, which is what's used
to determine which sessions that updated row should be visible to.

The first thing to recognize, then, is that an UPDATE consists of the following steps:

1. Read the original row in.
2. Change the fields adjusted by the UPDATE.
3. Save the new row into a newly allocated location with a new transaction ID.
4. When no one else is using it anymore, VACUUM will delete the original row.

Accordingly, anything that you UPDATE will temporarily take up twice as much disk
space. It's not just overwriting the original row with the new values; both old and
new versions will both be available for some period.

Row lock conflicts
There is one tricky part left here. At the point the preceding transaction stopped,
the first session has an open transaction trying to update the row WHERE s=1. What
happens if we try to do something similar in the second session before that's either
been committed or rolled back?

$ psql –c "UPDATE t SET i=i+1 WHERE s=1;"

Chapter 7

[153]

Guess what? This statement will hang! The reason is that we've reached the limits of
how much sessions can be isolated from one another safely. Once two sessions are
both trying to update the same row, some more complicated rules come into play.

Whenever you try to grab a lock on a specific row, which includes UPDATE, DELETE,
and the locks SELECT FOR UPDATE / SELECT FOR DELETE obtain, those have to wait
for anyone that already has a lock on that row. Once the original locker completes its
work, then some decisions have to be made.

If the transaction holding the lock rolled back, no harm done; the newer one
continues the originally planned work. But if the original session committed an
update, changing the row the second session intended to modify itself, exactly
what happens next depends on the configuration of your session.

PostgreSQL operates in two modes for resolving the order of operations in these
situations. In what it calls Read Committed mode, the default, having another row get
changed underneath a session isn't a disaster. What the server will now do is start over
the original work it was planning to do with the new copy of the row. If the old row
was selected using a WHERE clause, the new one will be checked to see if that condition
still applies. If not, the new copy is now ignored—that WHERE clause doesn't find it
anymore. But if all of the reasons for why that row was being updated still seem
to apply, the planned update will then just execute against the modified copy.

Returning to the example again for a moment, if the original transaction commits it
will be the same as if this order of events happened:

UPDATE t SET i=100 WHERE s=1;

UPDATE t SET i=i+1 WHERE s=1;

Which means that i=101 at the end. This is even though at the point where the
second statement started, the other update wasn't complete or visible yet. It will wait
for the update in the middle of completing and then add its own work on top of that.
This is because Read Committed gets a new snapshot of database activity it might
want to pay attention to at the beginning of every statement. In cases where just reads
are being done, this will be a consistent view throughout the whole transaction. In
the event of changes by other sessions, some of that new data can enter into your
open session this way.

Routine Maintenance

[154]

Serialization
Now, if the idea that UPDATE and DELETE statements made by other sessions will leak
into your view of the database state even within a transaction horrifies you, what
you probably want is the other transaction isolation method: serializable.

There are actually two slightly different MVCC modes available in PostgreSQL, to
help address different requirements here. These reflect two behaviors from the SQL
standard, introduced at http://www.postgresql.org/docs/current/static/
transaction-iso.html. The problems described there, such as nonrepeatable and
phantom reads, require using the database's more complicated serializable mode
to avoid, instead of the simpler and default Read Committed transaction model.
It's worth reading about these problems, because they tend to haunt complicated
applications that never consider the sort of race conditions among database operations.

Following the same basic example, where an open session has an uncommitted
UPDATE when a second tries to touch the same row, Serialization initially works
the same way as Read Committed. If an UPDATE, DELETE, or lock for a row that's
already locked is needed, the session waits for that to clear. If the transaction rolled
back or didn't touch the data in the row, everything proceeds as in the cases already
explained. But if the first transaction commits, and it actually modified the row
with UPDATE or DELETE instead of just having a lock on it, you're done. You will
get this error:

ERROR: could not serialize access due to concurrent updates

And your application has no choice here but to rollback the entire transaction it was
in the middle of and start over again. This level of isolation is normally required
if you have a transaction that executes multiple statements that absolutely must
operate on an identical view of the database. Read Committed lets the visibility
snapshot slip forward for things like updates to commonly touched rows as each
statement is processed. A serialized session aims to keep a consistent view for the
whole transaction, and if something happens to make that possible it throws an
error instead of risking a problem.

Deletions
There's little different that happens during DELETE instead. Close out any open
sessions you might have with unfinished transaction seen before. Now let's start
another transaction to delete a row:

postgres=# BEGIN;

BEGIN

postgres=# DELETE FROM t WHERE s=1;

Chapter 7

[155]

DELETE 1

postgres=# SELECT * from t;

 s | i

---+---

(0 rows)

Once again, if you look at this table from another session, because it's not been
committed yet the row deleted here will still be there, just with an xmax value set:

$ psql -c "SELECT *,xmin,xmax FROM t;"

 s | i | xmin | xmax

---+-----+--------+--------

 1 | 101 | 158213 | 158214

Only in first session has the row been deleted. This brings us to a second form of
visibility that needs to be considered: when a row is deleted, it can't actually go
away until any session that might need to see the row has ended. So when you
commit a deletion, it doesn't actually change the record itself. Instead, it updates the
visibility information around that row to say "this is deleted and may not be visible
everywhere", and then each client who checks it will need to make that decision for
itself. These are called dead rows in the database; regular rows are described as live.

Another interesting thing to note here is that the way this row looks is exactly like
the one left behind by an UPDATE; it's just another row with an xmax set waiting for
a commit, after which it can be removed. Because of MVCC, whether you UPDATE
or DELETE a row, you get the same form of dead row leftover at the end. The only
exception here is that if you are updating in a situation where the HOT technique
in the database can be used to speed your update, something covered in a while.
This may be a bit less expensive.

Advantages of MVCC
Why go through all this trouble? The transaction isolation of sessions from one
another has an extremely valuable result: it avoids locking many resources that can
block other clients from doing their work. The locks required to run a query and read
data do not conflict with the ones that are needed to write to the database. Reading
never blocks writing, and writing never blocks reading. This model scales quite
well into large client counts without running into lock contentions for either tables
or rows. You can still explicitly lock a row or table if needed, by methods including
the LOCK statement and the lock upgrades implemented in SELECT FOR SHARE and
SELECT FOR UPDATE statements.

Routine Maintenance

[156]

Disadvantages of MVCC
The main disadvantage of MVCC is the background work necessary to clean up its
visibility data and keep disk space under control, the topic of the next section.

You should also be aware that MVCC cannot make all possible concerns about
interactions between sessions and ordering magically go away. In fact, not seeing
data another session has been altering until later can introduce its own new class
of problem, for applications that are used to traditional locking approaches. You've
seen how UPDATE and DELETE order might happen in an unexpected way with a
regular Read Committed MVCC session, and you can't just make these go away
with serializable without preparing for some transactions to fail badly too.

Transaction ID wraparound
The implementation of MVCC in PostgreSQL uses a transaction ID that is 32 bits
in size. It's impractical to make it any longer because as you've just seen, visibility
information is stored in each row by as xmin and xmax values. Having a larger ID
would therefore increase the size of each row by a significant amount. A signed 32 bit
number can only handle a range of about two billion transactions before rolling over
to zero. When it exceeds its range, transactions that used to appear in the past will now
appear to be from the future, which as you might imagine will wreak havoc. If this
transaction wraparound ever happens to your database, it will fail to operate sanely,
and therefore the database will go far out of its way to keep that from happening.

The way that the 32 bit XID is mapped to handle many billions of transactions is that
each table and database has a reference XID, and every other XID is relative to it.
This gives an effective range of 2 billion transactions before and after that value. You
can see how old these reference XID numbers are relative to current activity, starting
with the oldest active entries, such as the following:

SELECT relname,age(relfrozenxid) FROM pg_class WHERE relkind='r' ORDER BY
age(relfrozenxid) DESC;

SELECT datname,age(datfrozenxid) FROM pg_database ORDER BY
age(datfrozenxid) DESC;

One of the things VACUUM does is push forward the frozen value once a threshold
of transactions have passed, set by the vacuum_freeze_max_age parameter, and
autovacuum has its own setting as autovacuum_freeze_max_age. This maintenance is
also critical to cleaning up the commit log information stored in the pg_clog directory.
Some transactions will "fall off the back" here, if they have a transaction ID so old that
it can't be represented relative to the new reference values. Those will have their XID
replaced by a special magic value called the FrozenXID. Once that happens, those
transactions will appear "in the past" relative to all active transactions.

Chapter 7

[157]

The values for these parameter are set very conservatively by default—to start
freezing things after only 200 million transactions, even though wraparound isn't a
concern until two billion. One reason for that is that is to keep the commit log disk
space from growing excessively. At the default value, it should never take up more
than 50 MB, while increasing the free age to its maximum (two billion) will instead
use up to 500 MB of space. If you have large tables where that disk usage is trivial,
and you don't need to run vacuum regularly in order to reclaim space, increasing the
maximum free age parameters can be helpful to keep autovacuum from doing more
work than it has to freezing your tables.

Adjusting the minimum values for when freezing happens is only really a good
idea in one situation: just after a form of bulk loading where there's no way you
will be modifying the transactions you just added. The problem using a low
vacuum_freeze_min_age during normal use is that the freezing process will replace
transaction information with the special FrozenXID, which loses potentially useful
data about when those transactions committed. If you ever end up in the unfortunate
position where you have to dig into transaction ordering forensics to track down
how a problem happened, discovering that the XID data that would have helped
sort that out has been frozen is not good news.

The basic trade-off you need to decide a position on is therefore how much of this
detailed transaction number diagnostic information you want to keep around,
knowing that if you keep it around too much it will take up more disk space and
make pg_clog less efficient. And at the same time, deciding to delay vacuum as long
as possible also means that when it does happen, a lot of work has to be done. More
frequent VACUUM work does mean more regular small disruptions though, so some
prefer to just schedule that cleanup instead of risking it popping up at a bad time.
It's tricky to provide general advice here that works for everyone.

Starting in PostgreSQL 8.3, you can use the system functions described at
http://www.postgresql.org/docs/current/static/functions-info.html
to determine the latest transaction ID in use on the server. txid_current() is the
simplest value to inspect, as shown in some of the early examples in this chapter.
Watching that number grow over time lets you estimate how many transactions
are occurring on your system. In order to compensate for transaction wraparound,
the value returned is actually 64 bits wide, with the top 32 bits holding a counter of
how many times the XID has crossed back to zero. This makes the value returned
by txid_current() always move forward, even as the actual XID rolls over its
upper limit.

Routine Maintenance

[158]

Vacuum
If you surveyed a set of experienced PostgreSQL database administrators and asked
what part of database maintenance requires the most work, the word "vacuum"
would pop up quite often in those conversations. A combination of complexity
and some unfortunate terminology choices makes this particular area of database
management quite prone to problems and misunderstandings, relative to how little
trouble most parts of PostgreSQL administration are.

The need for vacuum flows from the visibility approach described before. The
root problem is that clients executing UPDATE or DELETE operations don't know
everything happening on the server. They can't make the decision about whether
the original, now dead, row can truly be deleted, which is only possible when there
are in fact no clients left who need to see it. And sometimes the new rows are never
actually committed, leaving behind a different sort of dead row: a rolled back one
that never becomes visible.

Cleaning up after all these situations that produce dead rows (UPDATE, DELETE,
ROLLBACK) is the job for an operation named vacuuming. It inspects what
transactions have finished and cleans up rows that cannot be visible to any current or
future query. It also handles the transaction ID wraparound quirks of the database.

Vacuum Implementation
There are two primary sets of internal structures that serve as input and output from
data vacuuming.

On the input side, each database row includes status flags called hint bits that
track whether the transaction that updated the xmin or xmax values is know to
be committed or aborted yet. The actual commit logs (pg_clog and sometimes
pg_subtrans) are consulted to confirm the hint bits transaction state if they are not
set yet. Vacuum also writes to these hint bits, part of the row itself, as it confirms the
known state has changed.

Besides updating the data pages themselves, the additional output from vacuum is
the updated information in the free space map.

Regular vacuum
Vacuum does a scan of each table and index looking for rows that can no longer be
visible. The row hint bits are updated to reflect any information discovered, and
newly freed space is inserted into the free space map.

Chapter 7

[159]

Once the free space map for a table has entries on it, new allocations for this table
will re-use that existing space when possible, instead of allocating new space from
the operating system.

Returning free disk space
Usually administrators are surprised to find that there is no reduction in disk space
from using vacuum. There is only one situation where vacuum can actually reduce
the size of a table. If the last data page of a table is empty, completely free of rows,
and it's possible to obtain an exclusive lock on the table, vacuum executes a special
disk release process. It will scan backwards from the end, returning all pages it finds
to the operating system as now free space, until it finds a data page that isn't empty.

Accordingly, it's only possible for a regular vacuum to reduce the size of a table if it
has a contiguous chunk of free space at the end of the table. One common situation
that can produce this pattern of disk usage is when a table includes a fixed time
period of data, with new records constantly inserted and older ones periodically
deleted. If those deletions are cleaned up properly with vacuum, eventually you
can expect that the table size will reach a steady-state.

In most other situations, vacuum will never release disk space. In regular operation,
your goal should be for vacuum to run often enough that there never is a large
amount of free space in any table to release. This is sometimes unavoidable however;
a large deletion of historical data is one way to end up with a table with lots of free
space at its beginning.

Full vacuum
In versions of PostgreSQL before 9.0, the VACUUM FULL command, which is never
executed by autovacuum, takes a more aggressive approach to space re-use. It
compacts tables by moving rows to the earliest page they can be placed onto. This
makes the one situation where vacuum can release disk space, when it's all at the
end of the table, very likely. If you have any dead rows in your table, VACUUM FULL
will relocate them one at a time to an earlier part of the table, and then shrink it
accordingly once the end is all empty space.

There are two major downsides to doing that. The first is that it's very time and
resource intensive. VACUUM FULL is likely to take a very long time if your table is
larger, and during that time it will have an exclusive lock on the table. That's a very
bad combination. The second issue is index bloat, covered in more detail later and
equally troublesome.

Routine Maintenance

[160]

The net impact of this combination is that you want to avoid ever running VACUUM
FULL, which means that you should also avoid the situations that lead toward it
being the only remedy.

PostgreSQL 9.0 has introduced a rewritten VACUUM FULL command that is modeled
on the CLUSTER implementation of earlier versions. It does not have the same issues
described in this section. Instead, it does have the limitation that you need enough
disk space to hold a fresh copy of the table in order for it to work.

HOT
One of the major performance features added to PostgreSQL 8.3 is Heap Only
Tuples (HOT). HOT allows reusing space left behind by dead rows resulting from
DELETE or UPDATE operations under some common conditions. The specific case that
HOT helps with is when you are making changes to a row that does not update any
of its indexed columns. When this happens, if the new second copy of the row can
be fit onto the same page as the existing one, it's put there without a new index entry
being allocated for it. Instead, it's added to a list on that existing data block if there's
space, in a structure called an update chain.

And in order to make this case more likely to occur, HOT also does a single-block
"mini-vacuum" as part of its work whenever practical to do so. This combination—
doing a single block VACUUM and avoiding changes to the index structure—allows an
UPDATE that used to touch both the data ("heap") block and an index block to instead
only touch the heap; thus the name (Heap Only).

Note that this doesn't completely eliminate the need for other forms of VACUUM,
because HOT may not be able to do the single-block vacuum. It may not clean up
after all possible cases involving aborted transactions as well.

The normal way to check if you are getting the benefit of HOT updates or not is
to monitor pg_stat_user_tables and compare the counts for n_tup_upd
(regular updates) versus n_tup_hot_upd.

One of the ways to make HOT more effective on your tables is to use a larger fill
factor setting when creating them. Having extra empty space available in blocks
gives HOT more room to do the shuffling around it is good at without having to
move data to new disk pages.

Cost-based vacuuming
Running a regular VACUUM command is a pretty intensive operation. It's likely
to become the most resource intensive process running on your server, and if
autovacuum ran in that fashion it would be unusable in many environments.

Chapter 7

[161]

Fortunately there's another approach available. Cost-based vacuuming limits the
amount of disk I/O any given vacuum or autovacuum process is expected to do
per unit of time. It works by assigning an estimated cost to every I/O operation,
accumulating a total for each operation it performs, then pausing once an upper
limit on cost per iteration is exceeded.

The cost estimation presumes three basic operations vacuum performs, each with
their own presumed amount of work to handle:

Page hit: A data page was needed, but found in the shared buffer cache. It
merely needs to be scanned for dead rows, with no physical I/O involved.
This has a reference cost of one unit using vacuum_cost_page_hit, and
you shouldn't ever adjust it.
Page miss: The data page needed isn't already buffered, so it must
be read from disk before it can be scanned. This default set using
vacuum_cost_page_miss makes this cost 10.
Page dirty: After being scanned, the page needed to be modified; it's now
dirty and must be written out to disk. The default vacuum_cost_page_dirty
is 20.

The preceding parameters are set globally for all tables in the database, and impact
both manual vacuum and autovacuum (which is described in more detail in the next
section). The way these are described, such as saying things are "read from disk",
isn't quite right; they're read from the operating system cache, which may even have
them in regular memory already. Partly because of that class of problem, it's difficult
to adjust these values, and only recommended for very experienced PostgreSQL
administrators to attempt. Measuring the real-world costs of these operations is
hard, and there's not much evidence yet that doing so will improve significantly
over the theoretical model used here. It's much better to start vacuum adjustment
for workload by tweaking the higher-level settings, described next, instead of these.

A manual vacuum worker will execute until it has exceeded vacuum_cost_limit
of estimated I/O, defaulting to 200 units of work. At that point, it will then sleep for
vacuum_cost_delay milliseconds, defaulting to 0—which disables the cost delay
feature altogether with manually executed VACUUM statements.

However, autovacuum workers have their own parameters that work the same way.
autovacuum_vacuum_cost_limit defaults to -1, which is a shorthand saying to use
the same cost limit structure (the ratios between individual costs) as manual vacuum.
The main way that autovacuum diverges from a manual one is it defaults to the
following cost delay:

autovacuum_vacuum_cost_delay = 20ms

•

•

•

Routine Maintenance

[162]

So where a regular VACUUM will just keep going each time it accumulates >200 cost
units of operations, autovacuum will instead sleep for 20 ms each time it reaches
that point.

Note that if you want to adjust a manual VACUUM to run with the cost logic, you don't
need to adjust the server postgresql.conf file—this is a user setting. You can tweak
it before issuing any manual vacuum and it will effectively limit its impact for just
that session:

postgres=# SET vacuum_cost_delay='20';

postgres=# show vacuum_cost_delay;

 vacuum_cost_delay

 20ms

postgres=# VACUUM;

It's extremely difficult to turn all these estimated cost figures into a predicted
real-world I/O figure. But if you combine adjusting this value with monitoring
both the database and the I/O load at the operating system, it does allow some
iterative tuning methods.

autovacuum
With vacuum being so critical to performance, automating it as much as possible has
been one of the most regularly improved aspects of the database during the last few
years of development. Major advancements include:

7.3, 7.4, 8.0: autovacuum is available as a contrib module (contrib/pg_
autovacuum). It requires custom scripting to keep it running all the time.
8.1: The autovacuum daemon is introduced as a distinct process managed
by the server, always running whenever the server is enabled.
8.2: Last vacuum and last analyze times are saved to pg_stat_all_tables
so that you can monitor activity better.
8.3: autovacuum is turned on by default, and it can run multiple workers at
once. Additional log detail is possible via log_autovacuum_min_duration.
8.4: Disk-based free-space map means no max_fsm_pages overflow. Control
of per-table behavior is switched to use table storage parameters.

•

•

•

•

•

Chapter 7

[163]

Also note that in versions before 8.3 when it became enabled by default, running
autovacuum also required some optional table statistics be collected. The common
recipe to make this feature work in 8.2 and earlier is:

 stats_start_collector = on
 stats_block_level = on
 stats_row_level = on
 autovacuum = on

autovacuum logging
In versions before 8.3, autovacuum mentioned when it was visiting each database in
the logs but not much information beyond that. It's possible to watch it more directly
by setting:

log_min_messages =debug2

But be warned this level of debugging could potentially log a line or more for every
statement your server executes, which is both a major performance drag and a source
for running out of disk space. It's generally practical to use this much logging to
track down an autovacuum problem only when you know the server is nearly idle.

In current versions, you can easily monitor the daemon's activity by setting
log_autovacuum_min_duration to some number of milliseconds. It defaults to -1,
turning logging off. When set to a value >=0, any autovacuum action taking longer
than that amount of time will be logged. Since autovacuum can run quite often doing
trivial operations you don't necessarily care about, setting this to a moderate number
of milliseconds (for example 1000=1 second) is a good practice to follow.

autovacuum monitoring
As log files can easily get lost, the best way to approach making sure autovacuum is
doing what it should is to monitor what tables it's worked on instead:

SELECT schemaname,relname,last_autovacuum,last_autoanalyze FROM pg_stat_
all_tables;

You can trim down the information here by changing "all" in the preceding code to
name one of the alternate views; pg_stat_sys_tables shows only system tables,
while pg_stat_user_tables shows only your user tables.

Routine Maintenance

[164]

autovacuum triggering
If any database is in danger of overflowing the maximum allowed transaction ID,
autovacuum will first work on that situation. Autovacuum will kick in to work on
XID wraparound even if you've disabled it. It looks at the transaction age, a measure
of how many transactions have happened since a database was last reset to use a
new XID basis. You can monitor the highest age on any database and see them for
individual databases or tables using queries such as the following:

SELECT max(age(datfrozenxid)) FROM pg_database;

SELECT datname,age(datfrozenxid) from pg_database ORDER BY
age(datfrozenxid) DESC;

SELECT relname, age(relfrozenxid) FROM pg_class WHERE relkind = 'r' ORDER
BY age(relfrozenxid) DESC;

Once that check is passed without requiring any work, autovacuum next considers
the statistics collected about each table during routine operation. Each table in the
database has an estimated live and dead row count, as well as an estimated total
number of rows (its tuple count). These are combined to form a threshold for
how many rows must have changed before autovacuum processes the table like
the following:

autovacuum_vacuum_scale_factor * tuples + autovacuum_vacuum_threshold

As autovacuum_vacuum_threshold is small by default (50), once your table is
of modest size it will no longer be the main component here. Instead, you'll get
autovacuum triggering using the scale factor, which defaults to triggering after
changes impacting 20% of the table. Particularly on large tables, that value can be
much too high—20% of a billion row table is quite a bit of dead space to be hanging
around without vacuum cleanup.

This query will show you whether each table in your database qualifies for
autovacuum processing, and exactly where that line is relative to the total
amount of changes in there right now:

SELECT *,

 n_dead_tup > av_threshold AS "av_needed",

 CASE WHEN reltuples > 0

 THEN round(100.0 * n_dead_tup / (reltuples))

 ELSE 0

 END

 AS pct_dead

FROM

(SELECT

Chapter 7

[165]

 N.nspname,

 C.relname,

 pg_stat_get_tuples_inserted(C.oid) AS n_tup_ins,

 pg_stat_get_tuples_updated(C.oid) AS n_tup_upd,

 pg_stat_get_tuples_deleted(C.oid) AS n_tup_del,

 pg_stat_get_live_tuples(C.oid) AS n_live_tup,

 pg_stat_get_dead_tuples(C.oid) AS n_dead_tup,

 C.reltuples AS reltuples,

 round(current_setting('autovacuum_vacuum_threshold')::integer

 + current_setting('autovacuum_vacuum_scale_factor')::numeric *
C.reltuples)

 AS av_threshold, date_trunc('minute',greatest(pg_stat_get_last_
vacuum_time(C.oid),

pg_stat_get_last_autovacuum_time(C.oid))) AS last_vacuum, date_trunc('mi
nute',greatest(pg_stat_get_last_analyze_time(C.oid),

pg_stat_get_last_analyze_time(C.oid))) AS last_analyze

 FROM pg_class C

 LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)

 WHERE C.relkind IN ('r', 't')

 AND N.nspname NOT IN ('pg_catalog', 'information_schema') AND

 N.nspname !~ '^pg_toast'

) AS av

ORDER BY av_needed DESC,n_dead_tup DESC;

This simple query doesn't pay any attention to the fact that you can actually
customize autovacuum parameters for each table.

Per-table adjustments
Sometimes individual tables have vacuum requirements that don't match the rest of
the database, and it is possible to tweak the autovacuum behavior for each table.

The pgAdmin III GUI interface has a simple interface for this sort of
adjustment, using its "Vacuum settings" tab for an individual table you're
viewing. This is one area where adjustments with the command line can
be hard to get right.

Up until PostgreSQL 8.3, the per-table autovacuum parameters were stored in
the pg_autovacuum system table, documented at http://www.postgresql.org/
docs/8.3/static/catalog-pg-autovacuum.html.

Routine Maintenance

[166]

A common request is turning autovacuum off for just one relation, perhaps because
it's being processed by a daily off-hours manual vacuum:

INSERT INTO pg_autovacuum (

 vacrelid,enabled,

 vac_base_thresh,vac_scale_factor,

 anl_base_thresh,anl_scale_factor,

 vac_cost_delay,vac_cost_limit,

 freeze_min_age,freeze_max_age)

VALUES

 ('mytable'::regclass,false,-1,-1,-1,-1,-1,-1,-1,-1);

Values that you don't want to override, and instead inherit values from the standard
autovacuum settings, should be set to "-1" as used for all of the numeric parameters
in this example. You replace any parameter and set it to something new in the
appropriate place.

As of 8.4, per-table autovacuum information is stored as standard table storage
parameters, similarly to things such as the table's fill factor. These are normally set
at table creation time: http://www.postgresql.org/docs/current/static/sql-
createtable.html.

The psql utility displays table storage parameters when using its "d+" mode, as
shown by the following example that demonstrates disabling autovacuum on a table:

postgres=# alter table t SET (autovacuum_enabled=false);

ALTER TABLE

postgres=# \d+ t

 Table "public.t"

 Column | Type | Modifiers |
Storage | Description

--------+---------+---+------
---+-------------

 s | integer | not null default nextval('t_s_seq'::regclass) | plain
|

 i | integer | | plain
|

Has OIDs: no

Options: autovacuum_enabled=false

Chapter 7

[167]

Common vacuum and autovacuum problems
In many of the situations where VACUUM and related cleanup such as VACUUM FULL
or CLUSTER need to happen, such as index bloat and excessive dead tuples taking up
disk space, the work involved can be so intensive that administrators decide VACUUM
is something to be avoided. This is actually the opposite of what should be concluded.
In reality, the answer to most vacuum-related problems is to vacuum more often. This
reduces the amount of work done by each individual vacuum, and it promotes earlier
re-use of space that keeps table sizes from getting so big in the first place. Do not reach
the wrong conclusions from a painful vacuum situation—that almost always means
you didn't vacuum often enough, not that you should avoid running vacuum as much
as possible in the future.

There are however a few known issues that you can run into with vacuum and
autovacuum that will inhibit attempts to follow recommended vacuum practice,
or otherwise seem unexpected.

autovacuum is running even though it was
turned off
If your table is approaching transaction ID wraparound, autovacuum will process
it regardless of whether it's turned on or off globally or for that table. This is one
of the many reasons why running with autovacuum off, instead of tuning it to run
smoothly all the time, is dangerous. If you haven't done that tuning, and just turned
it off instead, when autovacuum does start anyway to deal with wraparound it will
not be adjusted appropriately to avoid interference with activity going on.

autovacuum is constantly running
While autovacuum stays running all the time, it shouldn't be doing active work all
the time. If it is, there are two common issues to investigate.

Each time vacuum runs out of its allocated space for maintenance_work_mem, it
needs to start over and make an additional pass over the table. Accordingly, if you
have set this tunable too low relative to the size needed to vacuum your tables,
vacuum can run much less efficiently than it should, and therefore autovacuum
will be running much more often just to keep up.

Another autovacuum problem related to having a large number of databases.
autovacuum tries to start one worker on each database every autovacuum_naptime
seconds (defaulting to one minute, up the maximum set by autovacuum_max_
workers. So if you have 60 databases, a new worker will be started every second
with the default parameters. You probably need to increase the nap time value if
you have more than dozen of databases in your cluster.

Routine Maintenance

[168]

Out of memory errors
If you are too aggressive with setting maintenance_work_mem, you may discover
that autovacuum periodically causes out of memory errors on your system. You can
typically identify that situation because the amount of memory listed in the logs for
the allocation failure attempt will match that database setting.

Don't forget that up to autovacuum_max_workers can be active, each using that
much memory. When estimating the available RAM on the system, it's better to err
on the small side initially with this setting. Ramp it up after you've done enough
monitoring to know what is the peak memory usage on your server.

Not keeping up on a busy server
The default value for autovacuum_vacuum_cost_delay of 20 ms is a medium one
appropriate for a smaller system. If you have a busy server, you can easily discover
that autovacuum never quite keeps up with incoming traffic. Particularly if you
have a system that's capable of good I/O performance, you can drop this setting
significantly in order to give autovacuum more opportunities to keep pace with
your server.

Large servers will commonly run with a cost delay in the 1 ms to 5 ms range. Your
first response to not having autovacuum run often enough to keep up should be to
reduce this parameter until you've reached that range. As operating system timers
sometimes won't delay for less than 10 ms at a time, at some point you may need to
switch to increasing autovacuum_cost_limit instead to get additional autovacuum
work accomplished. That's the general order in which to tune these two settings: the
delay first, down to either 10 ms if that's the best your OS will do or down to 1 ms,
and then the cost limit for additional increases in vacuum activity. Adjusting the rest
of the parameters should be considered a last resort, as they are more complicated,
more likely to be functional at the default settings, and easier to set badly.

autovacuum is too disruptive
The opposite case to the previous is also possible: autovacuum can easily consume
too much I/O capacity on a server without a lot of it to spare. In that case, increases
of autovacuum_vacuum_cost_delay to as high as 100 ms are common. This is the
preferred way to deal with the situation where vacuum seems to be consuming
too many resources. Increasing the cost delay to make autovacuum's actions less
disruptive is the way you should be dealing with the situation where it seems you
can't run vacuum during your busy times.

Chapter 7

[169]

Long running transactions
One problem that can block all vacuum-related activity on a server is a long running
transaction. If you have a query running that needs to see very old information, the
server can't cleanup past that point until it completes. The easiest way to monitor
long running transactions is watch for them in pg_stat_activity, using a query
such as:

SELECT procpid,current_timestamp - xact_start AS xact_runtime,current_
query FROM pg_stat_activity ORDER BY xact_start;

This will show just how long any open transaction has been running for.

Free Space Map exhaustion
One of the major problems in PostgreSQL versions up to 8.3 is that the FSM is
stored in shared memory, and is of a fixed size. If your database has a large number
of deletions, updates, and/or rollbacks in between when a manual or automatic
vacuum runs, it's possible for this FSM to run out of room and therefore not be able
to track additional free space. This can quickly lead to catastrophic amounts of table
and index bloat.

You can track how much of the FSM is being used only through watching the output
of manual vacuums. Here is an example showing the information provided by an
8.3 server:

postgres=# VACUUM VERBOSE;

INFO: free space map contains 49 pages in 62 relations

DETAIL: A total of 992 page slots are in use (including overhead).

992 page slots are required to track all free space.

Current limits are: 204800 page slots, 1000 relations, using 1265 kB.

In earlier versions, you'd see the totals, but not the limits for reference. You can
always check them using the SHOW command:

postgres=# SHOW max_fsm_pages;

 max_fsm_pages

 204800

Routine Maintenance

[170]

In either case, you want to confirm the total page slots used (992 in this example)
with the upper limit (204800 here). If those numbers are even close, you should be
thinking about increasing max_fsm_pages by a significant amount when you can
next arrange to restart the server. One common approach is to double it each time
you run into this situation, at least until you've reached the millions of slots, then
continue increases at a more moderate pace. It's not unusual for a large system to
set this parameter to 10 M or more. And if your number of relations is close to that
limit, set by max_fsm_relations, you similarly need to increase it, albeit not as
aggressively in most cases.

If you are analyzing your log files using pgFouine, it has a vacuum logging reader
that knows how to look for the output from VACUUM VERBOSE in the logs. If you're
using that software and a PostgreSQL version before 8.4, you should consider
generating its FSM report regularly to monitor this area.

Recovering from major problems
If you ever find yourself with so much free space you need reclaimed that VACUUM
FULL seems the only way out, you should consider a few things.

First, can you use CLUSTER to rebuild the table? It essentially makes a clean second
copy of the table and then substitutes it for the original once finished. While this
still requires a long lock and some processing time, this is far more efficient in most
cases than VACUUM FULL. Note that CLUSTER is only completely safe for this use as of
PostgreSQL 8.3. In earlier versions, a common trick was to use ALTER TABLE in a way
that would rewrite the entire table with a new version.

Second, how can you adjust your vacuum and/or autovacuum strategy to keep this
large of problem from showing up again? Generally the answer to this is "vacuum
more often" instead of less.

If index bloat is the main issue, perhaps aggravated by a past VACUUM FULL run,
REINDEX can be useful instead of CLUSTER for recovering from that. REINDEX
doesn't require an exclusive lock, but it will block writers to the table while it is
executing. There is unfortunately no simple way yet to run a REINDEX in a way
similar to CREATE INDEX CONCURRENTLY such that it doesn't block other processes.
It's sometimes possible to create a new index and use a pair of index renaming
operations to swap it out for the one you want to rebuild, then allowing you to drop
the original. This doesn't work for any index that enforces a constraint, which keeps
this technique from being useful on UNIQUE and PRIMARY KEY indexes. And you
need to be careful that no transactions still using the old index are still executing
before the final setup here.

Chapter 7

[171]

Autoanalyze
While technically a part of the same autovacuum daemon, the autoanalyze logic
works a bit differently. The server keeps an internal count of how many tuples
(rows) were in each table the last time it was analyzed. It then adds the estimated
counts it keeps for live and dead tuples in the database (the ones you can see in
pg_stat_user_tables) and triggers when these numbers drift too far. While
regular autovacuum only cares about rows that are dead because of UPDATE, DELETE,
and ROLLBACK, autoanalyze also counts tables that have expanded through simple
INSERT additions too.

By the time you've made it through the much more difficult to set up and monitor
autovacuum work on your server, the similar but simpler autoanalyze work should
be straightforward. While you can't see the internal tuple count to predict exactly
when it will kick in, the main two statistics that drive it, the live and dead tuple
counts, are shown along with the last time the two types of analysis were done in
pg_stat_user_tables. They all appear in the more complicated "Autovacuum
triggering" example seen previously too. Because running analyze on a table is
relatively fast, and there's no concerns about XID wraparound, it's easier to just
lower the parameters that control how often autoanalyze runs to make it happen
more frequently, or to run it manually on a regular schedule.

Note that there are some known problems with autoanalyze triggering, including
that it can be fooled into inactivity by HOT activity not adjusting its counters
properly. This logic was improved in PostgreSQL 9.0 to make this class of problem
less likely to run into. It's still a good idea to manually search out tables that
haven't been analyzed for a long time and give them some maintenance attention
if they might not have accurate statistics. It's not a hard bit of work to keep up with
compared to keeping them free of dead rows via regular vacuum work.

Index bloat
PostgreSQL's default index type is the binary tree (B-tree). While a B-tree gives good
index performance under most insertion orders, there are some deletion patterns
that can cause large chunks of the index to be filled with empty entries. Indexes in
that state are referred to as bloated. Scanning a bloated index takes significantly
more memory, disk space, and potentially disk I/O than one that only includes
live entries.

Routine Maintenance

[172]

There are a few main sources for index bloat to be concerned about. The first
involves deletion, and is concisely described by the documentation about
routine reindexing:

"Index pages that have become completely empty are reclaimed for re-use. There
is still a possibility for inefficient use of space: if all but a few index keys on a page
have been deleted, the page remains allocated. So a usage pattern in which all but a
few keys in each range are eventually deleted will see poor use of space."

The second source has been removed as of PostgreSQL 9.0. In earlier versions,
VACUUM FULL compacts tables by moving rows in them to earlier portions in the
table. The documentation on VACUUM FULL describes how that creates index bloat:

"Moving a row requires transiently making duplicate index entries for it (the entry
pointing to its new location must be made before the old entry can be removed); so
moving a lot of rows this way causes severe index bloat."

A third source is that any long-running transaction can cause table bloat and
index bloat just because it blocks the efforts of any vacuum procedure to properly
clean up tables.

Measuring index bloat
When you first create a new table with an index on it and insert data into it, the size
of the index will grow almost linearly with the size of the table. When you have
bloated indexes, that proportion will be very different. It's not unusual for a bloated
index to be significantly larger than the actual data in the table. Accordingly, the first
way you can monitor how bloated an index is, by watching the index size relative to
the table size, which is easy to check with the following query:

SELECT

 nspname,relname,

 round(100 * pg_relation_size(indexrelid) / pg_relation_
size(indrelid)) / 100

 AS index_ratio,

 pg_size_pretty(pg_relation_size(indexrelid)) AS index_size,

 pg_size_pretty(pg_relation_size(indrelid)) AS table_size

FROM pg_index I

LEFT JOIN pg_class C ON (C.oid = I.indexrelid)

LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)

WHERE

Chapter 7

[173]

 nspname NOT IN ('pg_catalog', 'information_schema', 'pg_toast') AND

 C.relkind='i' AND

 pg_relation_size(indrelid) > 0;

As an example of what this looks like when run, if you create a pgbench database
with a scale of 25, the index will be 13% of the size of the table:

relname | accounts_pkey

index_ratio | 0.13

index_size | 43 MB

table_size | 310 MB

Assuming you have a version of PostgreSQL before 9.0, where VACUUM FULL will
bloat indexes, you can easily get this table into the situation where its data pages can
be cleaned up but not its indexes. Just sparsely deleting some of the rows in the table,
so that no index pages can be reclaimed, then issue VACUUM FULL:

DELETE FROM pgbench_accounts WHERE aid % 2 = 0;

VACUUM FULL;

The table will be named just "accounts" on PostgreSQL versions before 8.4. Now
running the index ratio query shows a very different proportion:

relname | accounts_pkey

index_ratio | 0.27

index_size | 43 MB

table_size | 155 MB

Now the index is 27% of the size of the table—clearly quite bloated compared with
its original, compact representation. While the exact threshold where the ratio is so
far off that an index is obviously bloated varies depending on the structure of the
table and its index, if you take a periodic snapshot of this data it's possible to see
if bloat growth is increasing or not. And if you know what the ratio should be on
a fresh copy of the data, perhaps after a REINDEX or CLUSTER, you can guess when
bloat is likely to be bad by comparing against that figure.

If you don't have that data available, it's possible to get a rough estimate of how
much dead row bloat is in a table or an index by running some computations based
on the size of various structures in the table and index. The PostgreSQL monitoring
plug-in for Nagios, check_postgres, includes such an estimate, and some other
sources have their own checks that are often derived from that original source. A full
list of bloat checking utilities is available at http://wiki.postgresql.org/wiki/
Index_Maintenance

Routine Maintenance

[174]

Note that for the case given, the check_postgres index bloat test (as of version
2.14.3) doesn't estimate the bloat change as significant. You can see exactly what
query it estimates that with by running the program in verbose mode, copying the
code it executes, translating the "\n" characters in there to either spaces or carriage
returns, and then pasting the result into psql:

$./check_postgres.pl --action bloat -db pgbench -v -v –v

$ psql -d pgbench -x

pgbench=# SELECT

 current_database(), schemaname, tablename,

 reltuples::bigint, relpages::bigint, otta

…

iname | accounts_pkey

ituples | 1250000

ipages | 5489

iotta | 16673

ibloat | 0.3

wastedipages | 0

wastedibytes | 0

wastedisize | 0 bytes

In general, so long as you have an unbloated reference point, monitoring the index
to table size ratio will give you a more accurate picture of bloat over time than
something working with the table statistics like check_postgres can provide.

Detailed data and index page monitoring
If you really want to get deep into just what's happening with the disk space use
on your server, there are a few more PostgreSQL contrib modules that provide
additional information available:

pgstattuple: Maybe you don't trust the running estimates for dead rows
the database is showing. Or perhaps you just want to see how they are
distributed. This information and lots of other tuple-level data is available
using the pgstattuple module. The module includes functions to give
detailed analysis of both regular row tuple data and index pages, which
lets you dig into trivia like exactly how the B-tree indexes on your server
were built.

•

Chapter 7

[175]

pg_freespacemap: Lets you look at each page of a relation (table or index)
and see what's in the free space map (FSM) for them. The data provided is
a bit different in 8.4, where the FSM was rewritten, than in earlier versions.
There is an example of using this utility inside of the Nagios check_
postgres utility, a program discussed more in Chapter 11, Database
Activity and Statistics.

Monitoring query logs
If you want to profile what your server has done, one of the most effective ways is to
analyze the logs of what queries it executed. There are many ways you can approach
that problem, and several tools available to then analyze the resulting log files.

Basic PostgreSQL log setup
This is what the default settings in the postgresql.conf setting look like for the
main logging setup parameters:

log_destination = 'stderr'
logging_collector = off
log_line_prefix = ''
log_directory = 'pg_log'
log_filename = 'postgresql-%Y-%m-%d_%H%M%S.log'

It's important to know what all these lines mean before changing them:

log_destination: Write server log messages to the standard error output
of the process starting the server. If you started the server manually,
these might appear right on your console. If you sent the server output to
another spot, either using the pg_ctl -l option or by using command line
redirection, they'll go to the file you specified there instead.
logging_collector: Off means don't collect the information written to
standard error to redirect it somewhere else.
log_line_prefix: An empty string means don't add anything to
the beginning.
log_directory : When the logging collector is on, create files in the pg_log
directory underneath of your database directory (typically $PGDATA).
log_filename: Name any files the logging collector creates using date and
time information.

•

•

•

•

•

•

Routine Maintenance

[176]

log_directory and log_filename can be set to whatever makes sense for your
environment. The other parameters have some specific situations where you will
want to change them from the defaults, covered in the next few sections.

The server doesn't clean up log files if you turn collection on. You have to
manage that yourself, perhaps using standard UNIX log rotation utilities.

Log collection
While most server startup scripts will save log file output that the server writes for
you, that's typically going to be into a single file, such as how RedHat systems create
a pg_startup.log for you.

The parameter shown in all these examples as logging_collector was
renamed in PostgreSQL 8.3. Before then, it was known as redirect_
stderr. The change in name reflects the fact that it's also used to redirect
for the csvlog format in addition to stderr as of that version. The new
parameter has the same basic behavior.

If you want to save log files for query analysis, or you just want the log files to be
created in batches (per day by default), you'll want to turn the logging_collector
parameter on. Afterwards, instead of a single file, you'll get one named after
whatever log_filename pattern has been specified.

log_line_prefix
There are three basic formats of line prefix that will match the standard of sorts
introduced by the requirements of pgFouine, a popular log parsing utility covered
next. To ensure compatibility with that tool, you should use one of these three in
your postgresql.conf if you don't have any specific reason not to:

log_line_prefix = '%t [%p]: [%l-1] '
log_line_prefix = '%t [%p]: [%l-1] user=%u,db=%d '
log_line_prefix = '%t [%p]: [%l-1] user=%u,db=%d,remote=%r '

Note the trailing space in all these examples; that is important to always include in
your prefix setting. The first line just logs basic information. The second upgrades
that to also include the user and database information for the connection, which
allows filtering on those two fields when running pgFouine or similar utilities.
The final line also adds the remote host the connection came from, which for
some applications is an extremely useful bit of information for analyzing the
logs (even though pgFouine won't do anything with that).

Chapter 7

[177]

Note that if you're using syslog or the CSV format logs, the timestamp and process
information will be inserted for you automatically. You don't need to include it into
the prefix of the PostgreSQL log output too.

Multi-line queries
Sometimes client tools and psql sessions can execute queries that span more than
one line. Here's an example of such generated using psql:

postgres=# show log_line_prefix

postgres-# ;

With statement logging enabled, this will show up in the standard text logs like this:

2010-03-28 21:23:49 EDT [10669]: [1-1] user=postgres,db=postgres,remote=[
local] LOG: duration: 0.923 ms statement: show log_line_prefix

 ;

That's two lines of output. The dangling semi-colon is the only thing on the second
line, with no prefix appearing. Because of that, there's no way to associate that line
with the rest of the query, given that log lines are not guaranteed to be grouped
together—in a more complicated environment, another line might get in between
these two in the text format logs.

Log file analysis tools that want to follow every line in a query have no way to sort
out what to do here, and the better ones will warn you about this problem when they
run if it shows up. There are alternate logging formats besides simple plain text that
avoid this issue.

Using syslog for log messages
On UNIX-like systems, one approach for database logging that leverages existing
operating infrastructure is to redirect log_destination to use the syslog facility.

On Windows systems, you can use log messages to the Windows
Event Log similarly to how syslog is used here.

Routine Maintenance

[178]

The main thing to be concerned about when using syslog is a warning you'll find
in the documentation at http://www.postgresql.org/docs/current/static/
runtime-config-logging.html:

Note: The logging collector is designed to never lose messages. This means that in
case of extremely high load, server processes could be blocked due to trying to send
additional log messages when the collector has fallen behind. In contrast, syslog
prefers to drop messages if it cannot write them, which means it's less reliable in
those cases but it will not block the rest of the system.

This means the exact times when you want data the most —when the server
is overloaded—are when you are most likely to lose your logs if using syslog. That's
one reason why it's not a more popular approach. The complexity of setting up
syslog (or the improved syslog-ng) is another reason database administrators
tend to avoid this setup.

In addition to allowing use of common syslog analysis tools, another advantage of
the syslog format is that it knows how to handle multi-line messages in a way that
tools such as pgFouine can use.

CSV logging
Another way to avoid multi-line query issues is to use CSV logging, added to
PostgreSQL in version 8.3. This logs every statement in a delimited fashion that
clearly marks line breaks such that multi-line queries can be imported without
a problem into tools. You can even import these logs files into the database for
analysis; the documentation at http://www.postgresql.org/docs/current/
static/runtime-config-logging.html shows a sample table for that purpose
in the "Using CSV-Format Log Output" section.

Note that format of the CSV output fields and therefore the sample
table changed in 9.0 (application_name was added) compared
with 8.3/8.4. Make sure you're using the right table definition for
your version, or COPY will complain that the column count doesn't
match when you try to import.

To turn on this feature, you need to adjust the log destination and make sure the
collector is running:

log_destination = 'csvlog'
logging_collector = on

Chapter 7

[179]

The server must be completely restarted after this change for it to take effect. After
this change, the log files saved into the usual directory structure the collector uses
will now end with .csv instead of .log. If you followed the right documentation for
your version to create the postgres_log file, you would import it like the following:

postgres=# COPY postgres_log FROM '/home/postgres/data /pg_log/
postgresql-2010-03-28_215404.csv' WITH CSV;

Having all of the log data in the database allows you to write all sorts of queries
to analyze your logs. Here's a simple example that shows the first and last commit
among the logs imported:

SELECT min(log_time),max(log_time) FROM postgres_log WHERE command_
tag='COMMIT';

You might instead ask at what elapsed time since session start, each command
happened at:

SELECT log_time,(log_time - session_start_time) AS elapsed FROM postgres_
log WHERE command_tag='COMMIT';

Using this particular example against an imported pgbench run will show you that
pgbench keeps one session open for all the work each client does.

You can use this log to figure out what statement executes before a given commit too,
by looking for entries with the same session_id but with lower session_line_num
values. Often when people run into situations where a COMMIT statement is the one
that takes a long time, for example when a large queue of CHECK constraints have
built up, knowing what happened before the commit is critical and difficult to
discover information. The CSV format logs make this easy to determine, because
they contain every bit of session information.

The main disadvantage of the CSV log format is that you're writing out a lot of
logging information, and that can be too intensive on the exact type of system that
needs better logging the most: ones that are overloaded by bad queries.

Logging difficult queries
A straightforward way to generate log files only for the complex, long running
queries on your server—cutting out routine logging of small queries and therefore
reducing logging overhead—is to set a minimum statement duration to log. A
typical configuration would be:

log_min_duration_statement = 1000
log_duration = off
log_statement = 'none'

Routine Maintenance

[180]

The first line there will log every statement that takes over 1000 ms (one second)
without logging anything else. The other two are actually the defaults.

An alternate approach you'll sometimes see instead aims to just capture every query:

log_min_duration_statement = -1
log_duration = on
log_statement = 'all'

Since setting log_min_duration_statement to 0 will also log every statement with
a duration, that's an easier way to get this behavior. It only requires tweaking one
value, and it's easy to adjust upward so that it's only triggered when appropriate.
Because that's easier to manage, you should prefer that approach over increasing
the overall statement verbosity.

This area of PostgreSQL continues to expand as advances on the server and on
additional external utilities are finished. http://wiki.postgresql.org/wiki/
Logging_Difficult_Queries tracks the latest work in this area.

auto_explain
One of the great features added in PostgreSQL 8.4 is auto_explain, documented at
http://www.postgresql.org/docs/current/static/auto-explain.html.

This is a contrib module not necessarily installed by default. See the discussion of
contrib modules in Chapter 1, PostgreSQL Versions.

To enable the feature, edit your postgresql.conf to add parameters such as this:

shared_preload_libraries = 'auto_explain'
custom_variable_classes = 'auto_explain'
auto_explain.log_min_duration = '1s'

That will trigger auto_explain on any query longer than a second. You'll need to
completely restart the server after making this change before it goes into effect.

Once that's done, any query that takes longer than this will be logged with a full
EXPLAIN plan for the output. This is what one of the common slow pgbench UPDATE
statements looks like:

duration: 1955.811 ms plan:
Query Text: UPDATE pgbench_accounts SET abalance = abalance + -3410
WHERE aid = 9011517;
Update (cost=0.00..10.03 rows=1 width=103)
 -> Index Scan using pgbench_accounts_pkey on pgbench_accounts
(cost=0.00..10.03 rows=1 width=103)
 Index Cond: (aid = 9011517)",,,,,,,,,""

Chapter 7

[181]

The plans will be spread across multiple lines if in the regular logs, but will be in a
single column if loaded into a CSV format log. syslog logs will also tag the multiple
line output appropriately.

As for what you can use this for, a look at the logs shows the delay is happening
even when updating the tiny branches table:

duration: 1490.680 ms plan:
Query Text: UPDATE pgbench_branches SET bbalance = bbalance + -2792
WHERE bid = 4;
Update (cost=0.00..4.50 rows=1 width=370)
 -> Seq Scan on pgbench_branches (cost=0.00..4.50 rows=1 width=370)
 Filter: (bid = 4)",,,,,,,,,""

Knowing information like this—that the UPDATE hang is happening even when
updating a table extremely likely to be in the buffer cache—is extremely valuable
for tracking down the true cause of slow statements.

Log file analysis
Once you have some log files saved, next you'll want to analyze the results. The
common information you'll get is a profile of what queries were run, how long each
took individually, and sums showing the totals broken down by type of query.
There are several tools available for this purpose, with different trade-offs in terms
of things like how active their development community is, how fast the tool runs,
and how extensive the installation requirements are.

Normalized query fingerprints
To a person it would be obvious that the following two queries are fundamentally
the same:

UPDATE pgbench_accounts SET abalance = abalance + 1631 WHERE aid =
5829858;

UPDATE pgbench_accounts SET abalance = abalance + 4172 WHERE aid =
567923;

This isn't necessarily obvious to a log file parsing program though. Good database
programming practice will often convert these to executing with prepared statements,
which offers both a security improvement (resistance to SQL injection) as well as
a potential performance gain. The pgbench program used to generate many of the
examples in this book can be converted to them internally for executing statements:

$ pgbench -c4 -t 60 -M prepared pgbench

Routine Maintenance

[182]

Using prepared statements makes it obvious that these statements have the same
query fingerprint—that the main structure is the same:

UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2;

Some log file analysis programs are capable of doing a process named query
normalizing in order to extract a query fingerprint from even unprepared statements.
If you don't use prepared statements, that will be a feature you need if you want
to group similar queries together for analysis purposes.

pg_stat_statements
While in many cases you might still want to save full logs, the pg_stat_statements
feature added in PostgreSQL 8.4 can substitute as a way to analyze queries
without needing an intermediate logging facility. The feature is documented at
http://www.postgresql.org/docs/current/static/pgstatstatements.html.

This is a contrib module, not necessarily installed by default. See the discussion of
contrib modules in Chapter 1, PostgreSQL Versions. Like pg_buffercache, it needs to
be installed in each database you use it against. Here's an example of installing it on
a system with the RedHat Linux directory layout for PostgreSQL:

$ psql –d pgbench -f /usr/share/postgresql/contrib/contrib/pg_stat_
statements.sql

You enable this using postgresql.conf additions such as the following:

shared_preload_libraries = 'pg_stat_statements'

custom_variable_classes = 'pg_stat_statements'

pg_stat_statements.max = 10000

pg_stat_statements.track = all

This is followed by fully restarting the server. Once you've run some queries and
therefore populated the information in pg_stat_statements, you can look at them
the same as any other view:

pgbench=# SELECT round(total_time*1000)/1000 AS total_time,query FROM pg_
stat_statements ORDER BY total_time DESC;

 total_time | query

 78.104 | UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE
aid = $2;

 1.826 | UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE
bid = $2;

 0.619 | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE
tid = $2;

Chapter 7

[183]

 0.188 | INSERT INTO pgbench_history (tid, bid, aid, delta, mtime)
VALUES ($1, $2, $3, $4, CURRENT_TIMESTAMP);

 0.174 | SELECT abalance FROM pgbench_accounts WHERE aid = $1;

 0.026 | vacuum pgbench_branches

 0.015 | vacuum pgbench_tellers

 0.011 | BEGIN;

 0.011 | END;

 0.001 | truncate pgbench_history

It's extremely handy to have this facility built into the database, without needing
external tools. There are a few limitations. There's no query fingerprint normalization
for you if you don't use query parameters—the preceding example required running
pgbench in its prepared statement mode. The number of saved messages has a hard
limit on it. It's easy to lose an interesting statement log as new activity occurs on
the server.

And not necessarily every operation you can see in the logs will appear here. For
example, note that in the above log from a standard pgbench test, timing for the
UPDATE statements are listed, but the commits from the END statements are not
accumulating a lot of time. A very different view of this information shows up
if you look at the log file data, as shown in the next section.

PostgreSQL 9.0 adds an additional ability to pg_stat_statements: it can now also
track the amount of database cache buffers used while processing a statement.

pgFouine
The most popular query log file analyzer for PostgreSQL is pgFouine, available at
http://pgfouine.projects.postgresql.org/.

The program is available in packaged form for some operating systems that bundle
large amounts of open-source software with their distribution. pgFouine is available
for RHEL and CentOS Linux systems via the EPEL repository, and is available as one
of the standard packages on Debian/Ubuntu systems.

The program is a PHP script, and it has a moderate list of libraries it relies upon
that are not bundled with PHP itself. As such, getting pgFouine working properly
on a server that doesn't have a rich software library available can be difficult. This
includes Windows and most older UNIX systems.

Routine Maintenance

[184]

Note that you don't necessarily have to run the program on the server itself. Copying
the query log files daily from the database server onto another system, such as a web
reporting host, is a common practice from a performance point of view. You might
for example have a Solaris database server (where installing the program could be
difficult), then upload them to a Linux host, both to offload log file processing from
the database hardware and to publish them out to a web application.

A basic test of pgFouine can use a postgresql.conf with the default stderr log
format, redirected into a file, with an appropriate prefix and logging all statements:

logging_collector = on
log_line_prefix = '%t [%p]: [%l-1] user=%u,db=%d,remote=%r '
log_min_duration_statement = 0

Once you've generated some query traffic, you run the utility against the resulting
log file:

$ pgbench -T 60 -c 4 pgbench

$ pgfouine -logtype stderr -file $PGDATA/pg_log/postgresql-2010-03-28_
210540.log -top 10 -format text

This sample has been reformatted slightly to fit better here:

Overall statistics

Number of unique normalized queries: 8

Number of queries: 27,993

Total query duration: 3m52s

Queries by type

SELECT: 4666 16.7%

INSERT: 4665 16.7%

UPDATE: 13995 50.0%

Slowest queries

1) 5.37 s - END;

2) 5.26 s - END;

3) 5.26 s - END;

4) 5.25 s - END;

5) 4.97 s - UPDATE pgbench_accounts SET abalance = abalance + 1631 WHERE
aid = 5829858;

6) 4.96 s - END;

7) 4.58 s - END;

Chapter 7

[185]

8) 3.93 s - UPDATE pgbench_accounts SET abalance = abalance + 4172 WHERE
aid = 567923;

9) 3.92 s - END;

10) 3.78 s - UPDATE pgbench_accounts SET abalance = abalance + -379 WHERE
aid = 12950248;

Queries that took up the most time (N)

1) 2m14s - 4,665 - END;

2) 1m26s - 4,665 - UPDATE pgbench_accounts SET abalance = abalance + 0
WHERE aid = 0;

3) 5.3s - 4,665 - UPDATE pgbench_tellers SET tbalance = tbalance + 0
WHERE tid = 0;

4) 2.4s - 4,665 - UPDATE pgbench_branches SET bbalance = bbalance + 0
WHERE bid = 0;

5) 1.8s - 4,665 - INSERT INTO pgbench_history (tid, bid, aid, delta,
mtime) VALUES (0, 0, 0, 0, CURRENT_TIMESTAMP);

6) 1.5s - 4,665 - SELECT abalance FROM pgbench_accounts WHERE aid = 0;

7) 0.1s - 1 - select count(*) from pgbench_branches

8) 0.0s - 1 - truncate pgbench_history

Two of the sections left out of the preceding code, "Most frequent queries" and
"Slowest queries", are not very useful for this pgbench test, but might be useful for
your data set. Note that even though individual queries are logged here and we
didn't use prepared statements, the program figured out the common parameters
anyway. They show up in the last section there replaced with the value of zero,
which is what you want to see a normalizing query analysis tool do.

You can easily create HTML output instead:

$ pgfouine -file $PGDATA/pg_log/postgresql-2010-03-28_210540.log -logtype
stderr -format html > fouine.htm

And many other types of reports are available. You can just run pgFouine or read
its documentation for an idea of the options. pgFouine also includes a VACUUM
logging analyzer useful for monitoring that area of your database, as documented
at http://pgfouine.projects.postgresql.org/vacuum.html.

Because pgFouine needs to handle multi-line queries intelligently, you will end
up with missing data with a simple configuration when such a query appears. The
program's authors have traditionally recommended using the syslog format for all
logs to avoid this. Recent pgFouine releases (starting with 1.1) can instead import
CSV format logs by passing the -logtype csv parameter into the program.

Routine Maintenance

[186]

pgFouine is powerful, but it has some limitations. The heavy installation
dependencies can be overwhelming for some environments. As a PHP script, it's
not particularly efficient when dealing with really large query log files. And it's not
very flexible about things like setting log_line_prefix; you're compelled to adopt
its standard there. But if you can work within those limitations, pgFouine is a very
capable tool for finding what the slowest queries in your application are.

PQA
An ancestor of pgFouine, Practical Query Analysis or PQA is a project located at
http://pqa.projects.postgresql.org/ that provides some basic query analysis.
The program is fairly small and has minimal dependencies due to its small feature
set and use of Ruby as its programming language. However, it hasn't been updated
in several years, and doesn't support recent features such as the CSV logging format.

EPQA
Another program similar to PQS and pgFouine is Enterprise Postgres Query
Analyze or EPQA, located at http://epqa.sourceforge.net/.

Compared to those other tools, EPQA aims to consume less memory and process
logs faster, mainly due to its use of the more efficient string operations available
in Perl. It will also read compressed log files without having to decompress them
separately before running the tool. This tool also hasn't been updated in a few years
and has it a minimal development community compared to pgFouine.

pgsi
A slightly different spin on the usual query log impact analysis is done if
you analyze logs with the PostgreSQL System Impact (PGSI) Log Analyzer:
http://bucardo.org/wiki/Pgsi.

While this includes many of the same average and count statistics the other log
analyzers here include, it also considers factors like the average interval between
when the query runs. This will make queries that are essentially always running
easier to spot. pgsi is a relatively new project, but it already supports producing nice
reports in both HTML and Mediawiki formats. And it's better at interpreting what
you've put into your logs using the log_line_prefix mechanism as written, instead
of requiring a custom format, than most of the tools like it.

mk-query-digest
The most recent tool to be introduced for analyzing PostgreSQL log files is mk-query-
digest, available from http://www.maatkit.org/doc/mk-query-digest.html.

Chapter 7

[187]

This program originated as a tool for MySQL databases that PostgreSQL log
input was added to. One major advantage of its approach is that it includes some
advanced query fingerprint techniques. It's also designed to work with the popular
memcached query caching software; logging through a query cache can be tricky. It
is also designed to be fast at processing large log files, and it has minimal installation
requirements: just Perl and the libraries that ship with that language by default.

The main thing you might find missing from mk-query-digest are fancier output
modes. It produces a basic text-only output. You will need additional layers of tools
to get an HTML display for example, and said tools are not available yet as this is
being written. However, given that this tool has both a strong basic feature set and
its output is the same for each of the database formats it supports, there's a potential
for those tools to be written by a larger group than just the PostgreSQL community—
or even yourself, given that it's a straightforward tool to interact with. Wrapping the
output from this program into more web-suitable formats would not very difficult.

Summary
Properly maintaining every aspect of a database is time consuming work, but the
downside of not doing it can be even worse. This is particularly true when it comes
to good vacuuming practice, where routine mistakes can build up over time into
extremely expensive operations requiring downtime to fully recover from. Similarly,
monitoring your query logs to be proactive about finding ones that execute slowly
takes regular review, but the downside there can also be downtime if your server
falls apart under a heavy load.

MVCC will keep routine read and write conflicts from happening, but you
still need to code applications to lock resources when only one session should
have access to a row at once.
Any time you UPDATE, DELETE, or ROLLBACK a transactions, it will leave
a dead row behind (and potentially a dead index entry) that needs to be
cleaned up later by some form of vacuum.
It's better to tune for a steady stream of low intensity vacuum work,
preferably using the autovacuum feature of the database, instead of
disabling that feature and having to do that cleanup in larger blocks.
Avoid ever using the VACUUM FULL command. Instead CLUSTER as the main
way to reorganize a badly damaged table, or REINDEX to fix bad indexes.
Saving basic query logs to disk with proper prefix lines is vital to catching
execution slowdowns before they get too bad.
A variety of log query analyzer programs are available in order to report
on where your query time is being spent, each with their own strong and
weak points.

•

•

•

•

•

•

Database Benchmarking
PostgreSQL ships with a benchmarking program named pgbench that can be used
for a variety of tests. The default tests included are useful, but it also includes
a database benchmarking scripting language that allows for customizing them.
You can even use the pgbench core—an efficient, scalable multi-client database
program—to write completely custom tests. There are also some industry-standard
tests available that let you compare PostgreSQL with other database products, albeit
without officially audited results in most cases.

pgbench default tests
The original inspiration for the pgbench test is the Transaction Processing
Performance Council (TPC) benchmark named TPC-B: http://www.tpc.org/tpcb/.

Originally developed in 1990 (and now considered obsolete from the TPC's
perspective), this benchmark models a simple bank application that includes
a set of bank branches, each of which has some number of tellers and accounts.

Table definition
The main table definition SQL adds these tables:

CREATE TABLE pgbench_branches(bid int not null, bbalance int, filler
char(88));

ALTER TABLE pgbench_branches add primary key (bid);

CREATE TABLE pgbench_tellers(tid int not null,bid int, tbalance
int,filler char(84));

ALTER TABLE pgbench_tellers add primary key (tid);

CREATE TABLE pgbench_accounts(aid int not null,bid int, abalance
int,filler char(84));

Database Benchmarking

[190]

ALTER TABLE pgbench_accounts add primary key (aid);

CREATE TABLE pgbench_history(tid int,bid int,aid int,delta int, mtime
timestamp,filler char(22));

Before PostgreSQL 8.4, these tables did not have the pgbench_ prefix on
their names. This was dangerous because a badly written pgbench run
could wipe out a real table named accounts far too easily. Having done
that once, I can tell you it can be quite embarrassing to have to explain
why all the accounts are now missing from a live database server.

The intention of the various filler fields is to make sure that each row inserted
into the database is actually a full 100 bytes wide. This doesn't actually work as
intended; the way data is inserted, the filler doesn't take up any space beyond a
small amount of column overhead. This problem has never been corrected because
doing so would make it no longer possible to compare historical pgbench results
with later ones.

What you should realize is that every record type inserted by the standard pgbench
test is extremely narrow, only a small number of bytes are inserted for each of them.
In practice, even the smallest INSERT or UPDATE will dirty a standard 8K database
page and require that large of a write anyway. The fact that only a fraction is actually
dirtied after each change does help reduce total WAL write volume, but only once
you've written the usual full_page_writes copy of each page—which will end up
as the bulk of actual WAL throughput anyway.

Scale detection
The number of branches is referred to as the database scale, with each branch adding
another 10 tellers and 100,000 accounts to the database. This value is input when you
initialize the database pgbench is told to create tables into. Here's an example that
creates a database for pgbench and then populates it with the pgbench tables:

$ createdb pgbench

$ pgbench -i -s 10 pgbench

This will initialize (-i) the pgbench tables using a scale of 10 (-s 10) into the database
named pgbench. You don't have to use that name, but it's a common convention.

When pgbench runs in a regular mode (not initialization), it first checks if you
have manually told it the database scale using -s; if so, it uses that value. If not,
and you're running one of the default tests, it will try to detect the scale using the
following query:

SELECT count(*) FROM pgbench_branches;

Chapter 8

[191]

If you run a custom query, the scale will never be detected for you—it will always be
assumed to be 1. You must be careful when running custom tests to set it yourself in
any case where the test script you're running assumes the scale will be set properly.
That includes customized variations of the built-in tests you might create, like those
distributed with pgbench-tools.

Query script definition
Like the table code above, the actual queries run by the built-in standard pgbench
tests are compiled into its source code, making the only way you can see them to
refer to documentation such as http://www.postgresql.org/docs/current/
static/pgbench.html

The default transaction script, what's called the "TPC-B (sort of)" transaction when
you run the test (and referred to here as the "TPC-B-like" transaction), issues seven
commands per transaction. It looks like this inside the program:

\set nbranches :scale

\set ntellers 10 * :scale

\set naccounts 100000 * :scale

\setrandom aid 1 :naccounts

\setrandom bid 1 :nbranches

\setrandom tid 1 :ntellers

\setrandom delta -5000 5000

BEGIN;

UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :
aid;

SELECT abalance FROM pgbench_accounts WHERE aid = :aid;

UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;

UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :
bid;

INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :
bid, :aid, :delta, CURRENT_TIMESTAMP);

END;

The first three lines compute how many branches, tellers, and accounts this database
has based on :scale, which is a special variable name set to the database scale,
determined using the logic described in the last section.

Database Benchmarking

[192]

The next four lines create random values to use, simulating a bank transaction where
someone went to a specific teller at a specific branch and deposited/withdrew some
amount of money from their account.

The presumption that one is using a regular teller for all transactions
rather than a bank's Automated Teller Machine (ATM) is another clue as
to how old the benchmarking being simulated here really is. pgbench
is not simulating any real-world situation that still exists, and the TPC
retired TPC-B as useful some time ago. pgbench should be considered a
completely synthetic workload at this point, useful for testing some things
but not indicative of true real-world database performance at all.

The main core here is five statements wrapped in a transaction block, so they execute
either all together not at all. That way the sum of money accounted for in the bank
should match from the branch down to account level. Note that the statement will
still take up some time and resources on the server even if it is rolled back.

Each of the statements has a very different practical impact:

UPDATE pgbench_accounts: As the biggest table, this is by far the statement
most likely to trigger disk I/O.
SELECT abalance: Since the previous UPDATE will have left the
information needed to answer this query in its cache, it adds very little
work in the standard TPC-B-like workload.
UPDATE pgbench_tellers: With so many less tellers than accounts, this table
is small and likely cached in RAM, but not so small it tends to be a source of
lock issues either.
UPDATE pgbench_branches: As an extremely small table, the entire contents
of it are likely to be cached already and essentially free to access. However,
because it's small, locking might turn into a performance bottleneck here if
you use a small database scale and many clients. Accordingly, the general
recommendation is always to make sure scale is greater than clients for any
test you run. In practice, this problem is not really that important, although
you can see it in one of the examples below. Disk I/O on the accounts
table and commit rate will be more of a limiter than locking concerns
in most cases.
INSERT INTO pgbench_history: The history table acts as an append-only
one that is never updated or queried later, and accordingly it doesn't even
have any indexes on it. As such, this insert turns out to be a low volume
write, relative to the much more expensive indexed UPDATE statements.

•

•

•

•

•

Chapter 8

[193]

This is the default test. There are two others:

-N: Same as the above, but skipping the two small UPDATE statements impacting
tellers and branches. This reduces the main potential for lock contention, while
keeping the primary source of heavy writes.

-S: Just the SELECT statement on the accounts table, which then doesn't need to be
wrapped in a transaction block either.

It's unlikely you'll have any use for the test that skips some of the UPDATE statements,
but running just SELECT statements is very useful for examining the cache sizes on
your system and for measuring maximum CPU speed.

Configuring the database server for pgbench
All of the queries used for the built-in tests are simple: They are at most using a
primary key index to look a row up, but no joins or more complicated query types.
But the statements executed will heavily stress writes and the buffer cache's ability
to keep up.

Accordingly, parameters you might adjust break down into three major categories:

Important to note and possibly tune: shared_buffers, checkpoint_
segments, autovacuum, wal_buffers, checkpoint_completion_target.
Impacts test results significantly: wal_sync_method, synchronous_commit,
wal_writer_delay. Adjust on systems where a change is appropriate to get
good and/or safe results.
Does not matter: effective_cache_size, default_statistics_target,
work_mem, random_page_cost, and most other parameters. The various
bgwriter settings do have an impact, just usually not a positive one. Unlike
some real workloads where it might help, making the background writer
more aggressive usually results in a net loss in raw throughput on pgbench
tests, without improving latency either.

Sample server configuration
Some pgbench samples are provided below, from a server with the
following specifications:

Quad-Core Intel Q6600
8GB DDR2-800 RAM
Areca ARC-1210 SATA II PCI-e x8 RAID controller, 256MB write cache

•

•

•

•
•
•

Database Benchmarking

[194]

Database on 3x160GB Western Digital SATA disks using Linux software
RAID-0 (database)
WAL on 160GB Western Digital SATA disk
Linux Kernel 2.6.22 x86 64
Untuned ext3 filesystem

The operating system was on a different disk from any of the database files.

Here is a basic minimally tuned postgresql.conf capable of running pgbench
usefully on such a server, with 8GB of RAM, following the usual guidelines for
shared_buffers sizing:

shared_buffers = 2GB
checkpoint_segments = 32
checkpoint_completion_target = 0.9
wal_buffers = 16MB
max_connections = 300

Running pgbench manually
As a simple example of running a test, you could execute the SELECT only test for
a small number of transactions. Here's a quick test from the sample server:

$ pgbench -S -c 4 -t 20000 pgbench

starting vacuum...end.

transaction type: SELECT only

scaling factor: 10

query mode: simple

number of clients: 4

number of threads: 1

number of transactions per client: 20000

number of transactions actually processed: 80000/80000

tps = 17070.599733 (including connections establishing)

tps = 17173.602799 (excluding connections establishing)

This is simulating the situation where four database clients are all active at the
same time and continuously asking for data. Each client runs until it executes the
requested number of transactions.

•

•
•
•

Chapter 8

[195]

Since this is a Linux system, the pgbench driver program itself is known to limit
performance here when run as a single thread, described in more detail below.
Using more threads (only available in PostgreSQL 9.0 and later) shows a dramatic
improvement in speed:

$ pgbench -S -c 4 -j 4 -t 20000 pgbench

starting vacuum...end.

transaction type: SELECT only

scaling factor: 10

query mode: simple

number of clients: 4

number of threads: 4

number of transactions per client: 20000

number of transactions actually processed: 80000/80000

tps = 31222.948242 (including connections establishing)

tps = 31509.876475 (excluding connections establishing)

Rather than worrying about the transaction count, a simpler approach available
starting in PostgreSQL 8.4 is to specify a runtime instead. The above took 2.6
seconds; you could run for a full five seconds instead like this:

$ pgbench -S -c 4 -j 4 -T 5 pgbench

It's possible to get useful test results for a SELECT only test in a few seconds. You will
need a much longer test, in the minutes range, to get a TPC-B-like write test result
that is meaningful. A 10 minute long TPC-B like test, which is usually long enough,
could be run like this:

$ pgbench -c 4 -j 4 -T 600 pgbench

In earlier versions before the timed run was available, estimating how many
transactions are needed to get a useful runtime can take a few tries to get right.

Graphing results with pgbench-tools
Running a full, thorough pgbench evaluation of a server takes several days of system
runtime. Starting with PostgreSQL 8.3, the pgbench-tools program available
from http://git.postgresql.org/gitweb?p=pgbench-tools.git, allows for
automating multiple runs of pgbench, including production of graphs showing the
results. Earlier PostgreSQL versions did not save all of the needed information
to allow for graphing results over time.

Database Benchmarking

[196]

On a system that supports running the git version control software, you can retrieve
the source code like this:

$ git clone git://git.postgresql.org/git/pgbench-tools.git

$ cd pgbench-tools/

If you're on a database server that doesn't support running git, you may need to
run the above on a newer system that does, then use that system to create an archive;
here are two examples that produce a .tar and .zip file respectively:

$ git archive --prefix=pgbench-tools/ HEAD > pgbench-tools.tar

$ git archive --prefix=pgbench-tools/ --format=zip HEAD > pgbench-tools.
zip

Configuring pgbench-tools
The README file that comes with pgbench-tools is the definitive documentation
about how to use the program. Current recommended practice, that the examples
here will follow, is to create two databases for it to use. The primary one should
be named pgbench and it will contain the main database being tested. The second,
named results by default, will contain a summary of information about each test
after it finishes.

Here is a sample session that creates both databases and initializes the
results database:

$ cd pgbench-tools/

$ createdb pgbench

$ createdb results

$ psql -d results -f init/resultdb.sql

This may give you some error messages about tables it deletes not existing, these
are normal—they are because DROP TABLE IF EXISTS isn't available until
PostgreSQL 8.2, and pgbench-tools can in special cases be configured to run
against 8.1 databases.

The results database doesn't even need to be on the same server as the one being
tested. Making it remote keeps pgbench-tools itself from disturbing the database
being tested and the associated operating system cache, so this can be a better way
to set things up. The default configuration and examples here don't assume you've
done that simply because it complicates the configuration and use of the program,
for limited benefit—the cache disruption is not that large relative to the system
RAM nowadays.

Chapter 8

[197]

Once you know where each database is located, edit the config file at the root of the
pgbench-tools directory and update the settings for TEST and RESULT variables set
there. You may want to customize the number of worker threads as well; see notes
on that in the following section and in the pgbench-tools documentation.

Customizing for 8.3
If you're using PostgreSQL 8.3, you will also need to follow the notes in the config
file to swap which set of table names you are using. Some lines in the default one
must be commented out, while others must be enabled in their place.

Sample pgbench test results
These all come from the sample server and configuration described above, and are
the sort of graph that you get from pgbench-tools each time it is run. These results
were all created using PostgreSQL 9.0, allowing up to four pgbench worker threads
(one per core).

SELECT-only test
When running the simple read-only test, results will be very good while the database
fits in RAM, then dropping off fast after that. Note that the straight line you'll see
on all these graphs is always the database size value, which is in units shown by
the right axis scale.

Database Benchmarking

[198]

This curve has a similar shape no matter what hardware you have. The only thing
that changes is where the two big break points are at, depending on how much RAM
is in the server. You're limited by the speed of well cached system RAM on the left
side, by disk seek rate on the right, and some mix of the two in between.

TPC-B-like test
The scaling diagram has the same basic curve on the write-heavy test, but with fewer
transactions occurring:

If you look carefully at the left side of this, you can see one of the issues warned
about above and in the pgbench documentation: results at a very low database scale
are lower than when the database is a bit larger. This is due to lock contention for
the small branches table in particular, when running at higher client counts with
a tiny scale.

Chapter 8

[199]

The above results are averaged across all the client counts used. The number of
clients also impacts results quite a bit:

Corresponding, the client results are also averaged out over all the scaling factors.
The client scaling for the read-only test looks similar, just with smaller total values.

To get a really clear picture of the system, you should also take a look at the web
report produced by pgbench-tools. The number of clients and database scale that
produced the greatest single TPS value is usually an interesting number to note—the
included utility script fastest.sql will show you the best results from a run.

Database Benchmarking

[200]

Latency analysis
Most of the time, you can think of latency—the time taken to process a single
transaction—as the number of inverse of transactions/second. However, worst-case
latency is an extremely important number to note for many applications, and you
cannot determine it from any average measurement of TPS.

Another useful measure is to note a point above most, but not all, latency values.
You can usefully quantify this with a percentile measurement, which aims at some
percentage of the data and says what value at the top of them. The 90th percentile
is a common target, which computes a value such that 90% of the latency times
observed were below that time.

Accordingly, pgbench-tools always saves the latency data pgbench can produce,
and it computes average, worst-case, and the 90th percentile of latency results in
the HTML results it generates. This data, and the graphs that go along with it, are
a major reason to use this toolset instead of running pgbench manually. If you're
lucky, your results will look like this, a TPS over time graph from one of the fastest
TPC-B-like individual runs in the set graphed above:

Chapter 8

[201]

This run averaged 4036 transactions/second, and aside from early ramp-up and
shutdown the transactions processed on any second was still quite high. The
program also shows latency, how long each statement took to run, and graphs
that for you. Graphing the latency of individual statements can show you both
exactly how bad the worst-case is and what the distribution of those slow
statements looks like:

Worst-case latency peaked at just over 100 ms. The way the slow cases are clustered
around the same period here is quite common in these results; when the server slows
down, it will usually impact all the active clients at that time.

Database Benchmarking

[202]

What does a bad result look like? The following example still had a reasonable
average throughput of 1082 TPS, given it was running with a much larger database
and client size (scale=250, clients=96). That's still an average latency of just under
1 ms. But in this case the worst-case latency is a frightening 6348 ms—some clients
waited for over 6 seconds to get a response to their request. You can easily see how
intermittent the server's responses were by looking at the TPS graph too:

The only reason the average TPS was so high is that when the server was working,
it processed results quite quickly. But there were just as many periods it dropped to
processing very few transactions in any given second, and sometimes not at all for
several seconds.

When using pgbench to tweak write performance on a server, you need to be careful
not to optimize for throughput at the expense of worst-case latency. Few applications
would prefer an extra few percent throughput if it means a several-second delay. The
smoothness of the TPS graph, and correspondingly the worst-case latency results, are
just as important (and possibly more so) than the average value.

Unfortunately, long delays are quite common on write-heavy pgbench tests, just due
to how it always writes at the maximum possible speed possible from the hardware.
The typical cause is simple filling of the write cache on whatever controller is

Chapter 8

[203]

involved. In this example, the 256 MB write cache on the Areca controller used is
simply taking a few seconds to clear when it's filled with random I/O that's blocking
access to some resource a client needs. Behavior in this situation is commonly bad
on Linux, where the kernel developers rarely optimize for latency at the expense
of throughput, and it's easy to get backed up like this. More modern benchmarks
typically introduce pauses called think times where clients aren't actively pushing
work into the system, which allows for scaling their size upwards and seeing
useful latency results without being hammered all the time by disk writes queuing.
pgbench should not be considered representative of any real-world workload, as
most programs don't constantly write.

Sources for bad results and variation
There are many ways to get bad results from pgbench, ones that don't mean
anything valid. And there are even more ways to get results that vary so much from
one pgbench run to another that they don't mean what you would imagine them
to. Normally you should run any pgbench test at least three times and observe the
average and variation before presuming that test is valid. Taking the middle of three
results is a common median technique for filtering those results into a single one
for comparison.

You must let the test run for a while to get useful results. As a general rule of
thumb, if you haven't executed a minute's worth of runtime, you're unlikely to
have gotten useful results at all. The main exception is the select-only test, which
can give useful results in a small number of seconds. Generally, if you've seen more
than 100,000 transactions, that's enough that you can start to believe the results, and
fast hardware can execute that may SELECT statements in a few seconds nowadays.
pgbench-tools includes some buffer report scripts aimed to help investigate this
area, and the output from one of them is included in the web report results directory.

For write-heavy tests such as the TPC-B-like default one, you need to run for
long enough for a full checkpoint cycle to have occurred—at least a few minutes,
sometimes as many as 10 minutes—for the results to be meaningful. If you don't,
you'll see the run to run variation will be very large, depending on whether that
particular one included an active checkpoint in it or not.

Pay attention to the database size, relative to the amount of RAM and other caches
in your system, so that you understand what you're testing, and don't forget to set
the database scale manually if executing a custom test yourself. pgbench-tools
tries to take care of this detail for you, that is at least when you're using the standard
pgbench tables.

Database Benchmarking

[204]

Longer runs of pgbench will eventually end up triggering autovacuum and
eventually can even bloat the database. That improved significantly in PostgreSQL
8.3 due to the HOT feature, and the overhead of autovacuum was lowered due to
the FSM changes in 8.4. As all of the updates done in the standard pgbench test
qualify for the mini-vacuum work that HOT can perform, and the updates to
the pgbench_accounts table are the most difficult single statements to execute,
it benefits quite a bit from that feature.

Whether or not autovacuum is running really alters how the test performs. You
can get useful results with it turned on or off; just make sure you note which you're
testing, be consistent about it, and understand that your test results will be impacted
by that choice.

Developer PostgreSQL builds
If you have built PostgreSQL with the full set of development options turned on,
your pgbench results will be considerably slowed by that. This is something to watch
out for particularly in the alpha and beta builds of the software, where these features
may even be turned on in packaged versions such as the beta RPMs.

The worst performance hit comes from having assertions, checks in the code for
unexpected conditions, enabled. The assertion overhead scales upward as you
increase shared_buffers, which can result in the unexpected situation where large
buffer cache sizes actually decrease performance on the benchmark. Whenever
you're starting to use pgbench, it's a good idea to check that you don't have an
assertions enabled build like this:

postgres=# show debug_assertions;

 debug_assertions

 off

That will keep you from wasting time running benchmarks that have
confusing results.

Worker threads and pgbench program limitations
Always in earlier PostgreSQL versions and by default still, the pgbench program
itself runs as a single process on the system. It queues up statements for each client
to execute, then feeds them new ones as they report they're finished responding to
the previous one. In all situations, it is possible to have that process slow if you have
a large number of clients active. A common approach to work around that has been
to run the pgbench program itself on another system, which does unfortunately add
its own overhead too.

Chapter 8

[205]

The situation is particularly bad on Linux systems running kernel 2.6.23 or later.
The Completely Fair Scheduler (CFS) introduced in that version is not very fair to
pgbench, when it runs in its standard mode using a socket connection. The end
result is that throughput only scales into the low tens of thousands of transactions
per second, acting as if only one database core or processor is working right. Note
how large of a speedup using multiple threads was on the initial read-only sample
shown in the text above—an increase from 17K to 31K TPS certainly shows the single
pgbench worker was the bottleneck. The worst manifestation of this problem is
usually avoided when using pgbench-tools, as that always uses the TCP/IP
host-based connection scheme instead.

Starting in PostgreSQL 9.0, you can work around these problems by increasing the
number of worker threads that pgbench runs in parallel to talk to clients with. Each
worker is assigned an equal share of clients it opens and manages, splitting the load of
clients up so no single process has to service them all. The number of workers must be
a multiple of the client count, so you need to choose that carefully. The program will
abort complaining of bad input rather than doing anything if it can't divide the client
count requested equally among the number of workers specified; the way the program
is written, each worker must have the same number of clients assigned to it.

Generally, you'll want one worker thread per core on your system if you have a
version this capability exists in. pgbench-tools allows you to set a maximum worker
count while aiming to keep the clients properly divisible among workers, see its
documentation for details. Using multiple workers is usually good for at least a 15%
or greater speedup over using only a single one, and as suggested earlier increases
of over 100% are possible. If you create too many workers—for example making one
worker per client when the number of clients far exceeds system cores—you can end
up right back to where excessive swapping between processes on the system limits
performance again.

pgbench custom tests
While the built-in tests are interesting, you can use pgbench instead as a testing
harness to run your own database tests. This gets you multiple clients running at
once, executing concurrent queries with a minimum of scripting.

Database Benchmarking

[206]

Insert speed test
To give an idea how this might be useful, imagine you want to test how fast your
system can write data to disk using INSERT. You might copy the filler concept from
the built-in tables, where you just want to create some strings with a particular
length and therefore size in bytes, without caring about the content (this is included
in pgbench-tools as init/insertsize.sql):
create table data(filler text);

But then create a custom script that actually fills that much space up (also included
as insert-size.sql):

insert into data (filler) values (repeat('X',:scale));

This borrows the concept of "scale" from the regular tests and uses it to specify the
size of the data inserted. You can create your own variables with other names, pass
values for them on the command line, and then refer to them in your scripts.

Here's a sample session showing installation of this test using the sample version
included with pgbench-tools, followed by manually running this custom test
once with pgbench:

$ createdb insert

$ psql -d insert -f init/insertsize.sql

$ pgbench -s 1000 -f tests/insert-size.sql -n -c 4 -t 25000 insert

As with most custom tests, you have to manually specify the scale if you want that
to be set correctly, and you have to skip the VACUUM step that is normally would be
done on the standard tables with -n.

This data point isn't all the interesting by itself, but if you update the end of the
pgbench-tools config to run this test at a variety of sizes and client loads:

SCALES="10 100 1000 10000"
SCRIPT="insert-size.sql"
TOTTRANS=100000
SETTIMES=1
SETCLIENTS="1 2 4 8 16"
SKIPINIT=1

And then run that set, and you'll likely see a more interesting pattern emerge. On my
test system, the amount of INSERT statements per second doesn't vary much whether
you're writing 1 or 10000 bytes into each one. It's primarily bounded by disk commit
speed, which is always far less than the rated sequential write speed of the drive.

Chapter 8

[207]

But once you've reached a large enough number of clients combined with more bytes
written each time, eventually the total completed INSERT/second rate starts to drop
off. Find that point, measure actual disk writes using OS monitoring tools, and you'll
have determined your database system's burst ability for writing out new data from
inside the database itself, under a concurrent workload—something it's not very easy
to measure directly.

This is a moderately complicated synthetic database benchmark, with variable client
and workload sizes, and writing a client application this complicated from scratch
would take a while. By leveraging pgbench and pgbench-tools, you can easily
script something this complicated in only a few lines of code. And you'll end up
with a results database you can analyze for patterns using standard SQL queries
and tools.

Transaction Processing Performance
Council benchmarks
The TPC-B benchmark is just one of many created by the Transaction Processing
Performance Council. It's the second benchmark from them for what's called an
Online Transaction Processing (OLTP) workload, which is one heavy on database
writes. A more current benchmark in that same style is their TPC-C: http://www.
tpc.org/tpcc/ which includes what can be a fairly complicated mix of transaction
types that all revolve around order entry and related inventory in a warehouse.

Using genuine TPC benchmarks isn't something practical to do on your own unless
you're a major vendor prepared to license them and follow stringent reporting
guidelines. However, there are free and open-source clones of some of their
benchmarks available, which follow the spirit of the benchmark without giving
results that you can necessarily compare as directly across different types of systems.
The Database Test (dbt) project has produced clones of some of these tests, outlined
at http://osdldbt.sourceforge.net/ but not necessarily available in the best
form from there.

The benchmarking wiki page at http://wiki.postgresql.org/wiki/Category:
Benchmarking lists a variety of benchmarking programs and resources related to
using them with the database. The open-source alternative to TPC-C named dbt-2
has its best documentation linked to from there. It targeted PostgreSQL as its original
development platform, although there are more databases supported now. If you'd like
to simulate something that behaves more like a real-world workload than pgbench, but
would like to keep things very heavy on writes, dbt-2 is the standard program used
in the PostgreSQL community for that purpose. Past tuning of the database itself has
relied heavy on validation through improvements in dbt-2 results.

Database Benchmarking

[208]

The latest OLTP benchmark from the TPC is TPC-E, which models a large stock
trading brokerage firm. An open version is available as dbt-5, but that code is still
in active development. It may take a bit of work to get it running on your system.

Another popular test is TPC-H, which aims to model a decision support system
running many moderately complicated queries at the same time. The TPC has
released all of the code and data necessary to run this particular benchmark,
and one of the links on the benchmarking wiki page leads to information about
that. However, not all of the types of queries used by TPC-H are handled well by
PostgreSQL, mainly because they haven't shown up in enough real-world workloads
for anyone to optimize for them. The various commercial database vendors have to
make sure they do well on each of these major benchmarks, so there's considerably
more work put into making sure those products do well on TPC-C, TPC-E, and
TPC-H in particular.

Summary
Benchmarking databases is a very extensive topic, and this chapter just introduces
the major concepts. Having the pgbench tool bundled with the database is handy
for doing smaller tests, but you need to be careful of its limitations before you rely
too much on its results for your tuning efforts.

The basis for the built-in pgbench tests is outdated, and it's unlikely to match
real-world performance. It can still be useful as a synthetic performance test.
You can write your own custom tests, either against the standard pgbench
tables or new ones, and use the pgbench scripting capability to run those
tests against multiple clients at once.
Only a small number of the general database settings will impact pgbench
results, since its queries are so simple.
Using a benchmarking tool chain that graphs transaction rate and
latency, such as pgbench-tools, is vital to monitor latency in addition
to throughput rate.
Getting some of the modern, serious TPC benchmarking running with
PostgreSQL will provide much more useful test results, but they are much
harder to get started with too.

•

•

•

•

•

Database Indexing
An index is simply an organized list of values that appear in one or more columns
in a table. The idea is that if you only want a subset of the rows of that table, a query
can use the index to determine which rows match, instead of examining every row.
Because an index has an order to it, they can also be used to speed up situations
where a section of a table has to be sorted in order to return its values.

Indexes help the database cut down on the amount of data it needs to look at in
order to execute a query. It's hard to write about indexes without knowing how
queries are executed, and it's hard to discuss query execution without knowing what
indexes do. This chapter tries to break that explanation deadlock by using simple
index examples, where the associated query plans should make some sense even
without the query tuning background covered in the next chapter.

Indexes should not be relied upon to force ordering of a query. If you want a query
to be ordered a particular way, use ORDER BY to request it. The existence of an index
with that order is more likely to be selected to execute that query, as it will skip a
sorting step to do so. But just because a query normally uses an index that happens
to have an order in it to return results, that does not mean you'll always receive them
ordered this way. Query plans will change over time, to best match the underlying
data, as it changes too.

The main new thing to know to get started here, is that if you put EXPLAIN ANALYZE
in front of a SELECT statement, the database will show you how much work it
expected that query to take, as well as how much it actually did. Reading EXPLAIN
output is covered in more detail in the next chapter. You might discover you
get more out of this chapter if you return to it again after reading Chapter 10,
Query Optimization.

Database Indexing

[210]

Indexing example walkthrough
Discussion of indexes and query plans can quickly reach an overwhelming level of
theory. Instead, this section will lead you through running various queries, with and
without useful indexes, and showing how the query execution changes.

Measuring query disk and index block
statistics
The best way to really understand how indexes work to save on the number of disk
reads is to show how many blocks were actually used to satisfy that query. The
following view merges together the two main sources for relevant table statistics,
pg_stat_user_tables and pg_statio_user_tables:
CREATE OR REPLACE VIEW table_stats AS

SELECT

 stat.relname AS relname,

 seq_scan, seq_tup_read, idx_scan, idx_tup_fetch,

 heap_blks_read, heap_blks_hit, idx_blks_read, idx_blks_hit

FROM

 pg_stat_user_tables stat

 RIGHT JOIN pg_statio_user_tables statio

 ON stat.relid=statio.relid;

For the examples coming up, the following snippet of code is used after each
statement (with t being the only table they use) to show the buffer usage count
statistics that follow the query:
SELECT pg_sleep(1);

\pset x on

SELECT * FROM table_stats WHERE relname='t';

SELECT pg_stat_reset();

\pset x off

The idea is that if you reset all the database statistics after the previous query, run
a new query, then show the statistics; presuming no other activity is happening the
stats you see will only reflect what that last query did. The reason for the pg_sleep
there is that statistics are at best only updated a few times per second. If you display
them immediately after a query, they may not reflect recent activity. The pset
commands are toggling on and off the optional query output mode in psql, and
show each row returned on a separate line, which is much easier to read in the text
for this data. This is equivalent to the \x, that you'll see used sometimes in other
sections of this book, except that instead of toggling the value it's explicitly setting
it on or off; it works the same as specifying -x when running psql too.

Chapter 9

[211]

Starting in PostgreSQL 9.0, it's possible to get a subset of this information—the part
you're most likely to want—by using the EXPLAIN (ANALYZE ON, BUFFERS ON)
syntax. An example is shown at the end of the walkthrough.

Running the example
The complete demo used to generate these examples is included with this
book's sample files, and it was transformed into text by running the example
like the following:

$ psql -e -f indextest.sql > indextest.out

You might want to tinker with the source code or set up and try running it yourself
in this way. The general technique used—create sample data, execute a query, gather
usage statistics around it—is a very common one used for iteratively improving a
given query as you tweak either its indexing or database parameters

To keep complete control over what's going on while running this demo, the
autovacuum parameter was first turned off in the postgresql.conf file:

$ psql -c "show autovacuum"

 autovacuum

 off

If you have autovacuum turned on, you'll see slightly different results. It will do the
appropriate ANALYZE work needed to make things work right automatically, instead
of waiting for the manual execution shown here to take care of that.

Sample data setup
To create some sample data to demonstrate how indexes work, let's create a table
with a simple key/value structure. Each key can be an incrementing number, while
the values vary from 0 to 10. It's simple to use generate_series to create data
like that:

DROP TABLE IF EXISTS t;

CREATE TABLE t(k serial PRIMARY KEY,v integer);

INSERT INTO t(v)

 SELECT trunc(random() * 10)

 FROM generate_series(1,100000);

Database Indexing

[212]

Creating a serial field as a PRIMARY KEY will create a sequence and one index for
you, as noted when you run the preceding code:

NOTICE: CREATE TABLE will create implicit sequence "t_k_seq" for serial
column "t.k"

NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "t_pkey"
for table "t"

The first valuable thing to know is how many pages (blocks of 8 KB each) the table
has, and how many tuples (rows) the query planner believes the table to have. As
autovacuum is turned off, that information wouldn't have appeared yet:

SELECT relname,relpages,reltuples FROM pg_class WHERE relname='t';

 relname | relpages | reltuples

---------+----------+----------

 t | 0 | 0

This shows why turning autovacuum on, by default in 8.3 was so valuable—in earlier
versions it was easy to miss this step, and end up running queries using completely
wrong statistical information. A manual ANALYZE step will make sure all the statistics
are current, and you can even compute the average number of rows stored per page
of data. Here VACUUM ANALYZE is used because it also updates the hint bits related
to the table, reducing variation in query runtimes later:

VACUUM ANALYZE t;

VACUUM

SELECT relname,relpages,reltuples FROM pg_class WHERE relname='t';

 relname | relpages | reltuples

---------+----------+----------

 t | 443 | 100000

SELECT relname,round(reltuples / relpages) AS rows_per_page FROM pg_class
WHERE relname='t';

 relname | rows_per_page

---------+--------------

 t | 226

At a higher level, 100,000 rows of data are taking up 443, 8 K blocks on disk, each one
of which holds approximately 226 rows.

Chapter 9

[213]

Simple index lookups
If you use the primary key on the table, which was built using an index, it's possible
to retrieve a row using that index quite quickly. This uses what's unsurprisingly
called an index scan:

EXPLAIN ANALYZE SELECT count(*) FROM t WHERE k=1000;

QUERY PLAN

Aggregate (cost=8.28..8.29 rows=1 width=0) (actual time=0.034..0.036
rows=1 loops=1)

 -> Index Scan using t_pkey on t (cost=0.00..8.28 rows=1 width=0)
(actual time=0.020..0.023 rows=1 loops=1)

 Index Cond: (k = 1000)

 Total runtime: 0.104 ms

seq_scan | 0

seq_tup_read | 0

idx_scan | 1

idx_tup_fetch | 1

heap_blks_read | 0

heap_blks_hit | 1

idx_blks_read | 0

idx_blks_hit | 3

The second part here demonstrates what comes out of the pg_stat_reset/table_
stats combination used around each of the statements in the preceding example as
shown and used in the provided source code example.

This demonstrates the first thing to recognize about indexes. Note the counts here
for heap_blks_hit and idx_blks_hit. Even when you can use an index to look
up something by its primary key, you cannot return the result without looking at
the associated row. Here, there are three index blocks used to navigate down to the
block where the row needed was located, then that single heap (row data) block
was returned. The reason for this is because PostgreSQL doesn't include visibility
information in the indexes yet. The actual row must be consulted to determine if it's
visible; it's not enough to confirm the key value "1000" exists in the index and then
include it in the count here.

Accordingly, it's quite easy for an indexed scan to use more I/O than one that
doesn't use an index. The index must be selective—filter out a significant portion
of the rows—before it is worth using.

Database Indexing

[214]

Full table scans
If you ask for data that does not have a selective index available, such as anything
related to the unindexed v column, the query can only occur by running a full
sequential scan over all the rows in the table:

EXPLAIN ANALYZE SELECT count(*) FROM t WHERE v=1;

QUERY PLAN

Aggregate (cost=1717.76..1717.77 rows=1 width=0) (actual
time=74.535..74.537 rows=1 loops=1)

 -> Seq Scan on t (cost=0.00..1693.00 rows=9903 width=0) (actual
time=0.015..56.847 rows=10054 loops=1)

 Filter: (v = 1)

 Total runtime: 74.600 ms

seq_scan | 1

seq_tup_read | 100000

idx_scan | 0

idx_tup_fetch | 0

heap_blks_read | 0

heap_blks_hit | 443

idx_blks_read | 0

idx_blks_hit | 0

You can see that every single one of the 443 blocks in this table were required to
satisfy this query.

Another thing to recognize is that just because a query skips a portion of a table,
that doesn't automatically mean that an index will be useful to execute it. You have
to skip enough of a table for it to be worthwhile to do so. The following compound
query for example scans the whole table, even though it's only looking for a part of
the key values:

EXPLAIN ANALYZE SELECT count(*) FROM t WHERE k>9000 AND v=5;

QUERY PLAN

Aggregate (cost=1965.94..1965.95 rows=1 width=0) (actual
time=94.196..94.197 rows=1 loops=1)

 -> Seq Scan on t (cost=0.00..1943.00 rows=9176 width=0) (actual
time=3.254..78.297 rows=9097 loops=1)

Chapter 9

[215]

 Filter: ((k > 9000) AND (v = 5))

 Total runtime: 94.266 ms

seq_scan | 1

seq_tup_read | 100000

idx_scan | 0

idx_tup_fetch | 0

heap_blks_read | 0

heap_blks_hit | 443

idx_blks_read | 0

idx_blks_hit | 0

Generally, any time a query is expected to hit a significant percentage of a table, you
can expect a full sequential table scan to happen even if an index is usable there.

Index creation
To try and improve things, let's create an index on the value column, and look at
how large it is:

CREATE INDEX i ON t(v);

SELECT relname,reltuples,relpages FROM pg_class WHERE relname='i';

 relname | reltuples | relpages

---------+----------+---------

 i | 100000 | 221

SELECT relname,round(reltuples / relpages) AS rows_per_page FROM pg_class
WHERE relname='i';

 relname | rows_per_page

---------+--------------

 i | 452

One thing you should notice here is that the index is certainly not tiny compared
to the table, which is the case surprisingly often. It's about half the size of the table,
at 221 pages. You should always note how large any index created is relative to the
table when determining if it's a worthwhile addition. The disk and maintenance
overhead of an index can be considerable, and it needs to be justified by a
performance improvement when running queries.

Database Indexing

[216]

Lookup with an inefficient index
Is this new index worth being created? Consider a simple query that uses it to filter
out based on the value:

EXPLAIN ANALYZE SELECT count(*) FROM t WHERE v=1;

QUERY PLAN

Aggregate (cost=756.55..756.56 rows=1 width=0) (actual
time=31.962..31.963 rows=1 loops=1)

 -> Bitmap Heap Scan on t (cost=165.01..731.79 rows=9903 width=0)
(actual time=1.821..18.010 rows=10054 loops=1)

 Recheck Cond: (v = 1)

 -> Bitmap Index Scan on i (cost=0.00..162.53 rows=9903
width=0) (actual time=1.721..1.721 rows=10054 loops=1)

 Index Cond: (v = 1)

 Total runtime: 32.019 ms

relname | t

seq_scan | 1

seq_tup_read | 100000

idx_scan | 1

idx_tup_fetch | 10054

heap_blks_read | 0

heap_blks_hit | 886

idx_blks_read | 25

idx_blks_hit | 0

We expect 1/10 of the table, or around 10,000 rows, to be returned by the index
scan, and that's what happens (9903 in this case). It is effectively doing two scans
of the whole table to do that though (443 blocks + 443 blocks=886 blocks), plus the
overhead of the index lookup itself (25 blocks). This is clearly a step back from just
looking at the whole table. This shouldn't really come as any surprise. Given how
this table was created, there's likely to be a value where v=1 on every data block, so
we can't help but scan them all here. The planner doesn't know this (yet!) though,
and it's actually made executing this query worse.

Chapter 9

[217]

You might wonder why it executes faster than the previous code despite this. No
special work was done to isolate out caching effects; most of the data here is already
sitting in the database's buffer cache this time. Generally, you need to run any query
you're measuring three times if you want to get a feel for caching. If the first is much
slower, and the second and third are about the same runtime, it's likely just the case
that the data had to be read from disk or the OS cache for the first, while it was found
in the database cache for the later ones.

Combining indexes
Though, this doesn't mean the v index is useless. If you are running something that
is selective based on the k index, the one on v can be combined with that. With the
index in place, this earlier example now uses a complicated query plan:

EXPLAIN ANALYZE SELECT count(*) FROM t WHERE k>9000 AND v=5;

QUERY PLAN

Aggregate (cost=787.97..787.98 rows=1 width=0) (actual
time=40.545..40.546 rows=1 loops=1)

 -> Bitmap Heap Scan on t (cost=170.38..765.03 rows=9176 width=0)
(actual time=4.107..24.606 rows=9097 loops=1)

 Recheck Cond: (v = 5)

 Filter: (k > 9000)

 -> Bitmap Index Scan on i (cost=0.00..168.08 rows=10110
width=0) (actual time=3.255..3.255 rows=9993 loops=1)

 Index Cond: (v = 5)

 Total runtime: 40.638 ms

seq_scan | 0

seq_tup_read | 0

idx_scan | 1

idx_tup_fetch | 9993

heap_blks_read | 0

heap_blks_hit | 443

idx_blks_read | 23

idx_blks_hit | 1

Database Indexing

[218]

It doesn't turn out to be any more efficient (because all the data blocks were pulled
anyway), but the amount of duplication isn't very bad—just a small amount of extra
index overhead. It does demonstrate the next useful thing to know about indexes.
We provided single column indexes covering k and on v. The query looked for
specific ranges or values for both parameters. The query planner can combine those
using what it calls a bitmap index scan. There was no need to create an index on
the two fields together—(k,v) or (v,k)—to get this behavior. Two single column
indexes were sufficient. This is normally the case with PostgreSQL. You can put an
index on each of the columns you want to filter on, and they can be very efficiently
combined in most cases. You really need to prove that a compound index covering
more than one field is a worthwhile performance improvement before you add one,
particularly given they will only provide a useful speedup in queries that use that
exact combination. Combining single column indexes is often as fast, and you can
use them in any query that references a column that you indexed.

Switching from indexed to sequential scans
Previously, it was pointed out that when the query planner knows much of the table
is going to be returned, it will just execute a sequential scan. This still isn't the case
even in the very poor plan that is given, if we want all the values from 0 to 3 here:

EXPLAIN ANALYZE SELECT COUNT(*) FROM t WHERE v<4;

QUERY PLAN

Aggregate (cost=1706.53..1706.54 rows=1 width=0) (actual
time=112.030..112.031 rows=1 loops=1)

 -> Bitmap Heap Scan on t (cost=665.33..1606.83 rows=39880 width=0)
(actual time=5.712..59.564 rows=40144 loops=1)

 Recheck Cond: (v < 4)

 -> Bitmap Index Scan on i (cost=0.00..655.36 rows=39880
width=0) (actual time=5.609..5.609 rows=40144 loops=1)

 Index Cond: (v < 4)

But, even with the relatively small amount of data we're giving the planner (more on
that in a while), if you ask for more than that it realizes a sequential scan will
execute better:

EXPLAIN ANALYZE SELECT COUNT(*) FROM t WHERE v<5;

QUERY PLAN

Aggregate (cost=1817.10..1817.11 rows=1 width=0) (actual
time=149.846..149.848 rows=1 loops=1)

Chapter 9

[219]

 -> Seq Scan on t (cost=0.00..1693.00 rows=49640 width=0) (actual
time=0.010..82.892 rows=49989 loops=1)

 Filter: (v < 5)

Note that this second plan actually executes slower as shown, because it's doing
more work: the Aggregate step has to process 49989 rows instead of the 40114
handled previously, and when all the data is in RAM you can assemble a bitmap
index scan of it quite quickly. Against a large table that wasn't cached in memory,
where random index scans touching every single block would be quite a bit slower
than one sequential one to do the same, this second form of plan could be an order
of magnitude or more faster.

Planning for plan changes
This behavior—that index scans will flip into sequential ones once they access
enough of a table—is one of the more surprising ones to many people. Random disk
access is so much slower than sequential that it makes sense to do so. But if all your
data is cached in RAM (the case on examples shown here), the advantages aren't as
obvious. And that may very well always be the case with your data. In that case, you
could even consider lowering database query parameters like random_page_cost
to make the optimizer understand your true situation.

This whole area is one of the things to be wary of when executing your own queries
that expect to use indexes. You can test them out using some subset of your data, or
perhaps using the initial production set. If you then deploy onto a system with more
rows, or the production system expands its data size, these plans will change. What
was once an indexed query might turn into an unindexed full sequential scan. What
can be even more frustrating for developers is the opposite: a query coded against a
trivial subset of the data might always use a sequential scan, just because the table is
small and the selectivity of the index low. Run the same query against the production
data set, where neither is true anymore, and it could instead run using an index.

Whether an index will be used or not is a combination of both the query and the
underlying table it's executing against, determined based on the statistics about
the table. This is another topic discussed more in the next chapter.

Clustering against an index
If you want to lookup things in this data set based on the values in the v column,
the fundamental issue here has already been described. Each page of data has about
226 rows in it, which you can expect to have around 22 rows that contain each value
present. So there's no way to pick a value that only shows up in a subset of the table
data blocks.

Database Indexing

[220]

If there is a particular value you do want your data to be organized around, it's
possible to do so using the CLUSTER command, described in more detail next:

CLUSTER t USING i;

ANALYZE t;

Since autovacuum is off, this is followed by a manual ANALYZE to make sure the
change in structure of the table is noted. In particular, the statistics for the data
will now reflect that the structure of the table is highly correlated with the v field.

Now, if you execute a query that only looks at a portion of the table based on the
value field, that can be executed efficiently using an index scan:

EXPLAIN ANALYZE SELECT COUNT(*) FROM t WHERE v<4;

QUERY PLAN

Aggregate (cost=1339.40..1339.41 rows=1 width=0) (actual
time=140.149..140.151 rows=1 loops=1)

 -> Index Scan using i on t (cost=0.00..1239.13 rows=40107 width=0)
(actual time=0.105..76.797 rows=40144 loops=1)

 Index Cond: (v < 4)

seq_scan | 0

seq_tup_read | 0

idx_scan | 1

idx_tup_fetch | 40144

heap_blks_read | 0

heap_blks_hit | 178

idx_blks_read | 90

idx_blks_hit | 0

Note that the combined I/O here (178 heap blocks, 90 index blocks) is indeed less
than scanning the whole table (443) blocks looking for 40% of it. This is only true
on an index scan that's expected to do sequential transfers; using a scattered 40% of
an index would not be so efficient. Again, the measured times here are impacted by
caching effects and some random variation, so don't read too much into the fact that
actual runtime here (140 ms) is actually slower than how long this took previously
(112 ms) before the table was clustered during the individual executions I grabbed
snapshots. Ultimately, on a system where everything doesn't fit in RAM, lowering
total blocks fetched is normally a big win.

Chapter 9

[221]

There's still a threshold here. At some point getting even more of the table will
switch to a sequential scan again:

EXPLAIN ANALYZE SELECT COUNT(*) FROM t WHERE v<6;

QUERY PLAN

Aggregate (cost=1842.53..1842.54 rows=1 width=0) (actual
time=215.587..215.589 rows=1 loops=1)

 -> Seq Scan on t (cost=0.00..1693.00 rows=59810 width=0) (actual
time=0.019..116.624 rows=59982 loops=1)

 Filter: (v < 6)

seq_scan | 1

seq_tup_read | 100000

idx_scan | 0

idx_tup_fetch | 0

heap_blks_read | 0

heap_blks_hit | 443

idx_blks_read | 0

idx_blks_hit | 0

Because the index will not be considered selective enough to justify the overhead
of using it anymore.

Explain with buffer counts
These examples should have proven to you that looking at the counts of blocks hit
and read is valuable for determining whether a query plan is really being executed
correctly or not. PostgreSQL 9.0 adds a feature to make this easier than before.
Instead of looking at the pg_stat* data as done in the previous example, you can
request a count of buffers accessed directly when running EXPLAIN:
EXPLAIN (ANALYZE ON, BUFFERS ON) SELECT count(*) FROM t WHERE v=5;

QUERY PLAN

Aggregate (cost=332.92..332.93 rows=1 width=0) (actual
time=39.132..39.134 rows=1 loops=1)

 Buffers: shared hit=46 read=23

 -> Index Scan using i on t (cost=0.00..308.21 rows=9883 width=0)
(actual time=0.069..21.843 rows=9993 loops=1)

 Index Cond: (v = 5)

 Buffers: shared hit=46 read=23

Database Indexing

[222]

To see how well this works, try running that query again after dropping the index
that's selective on v:

DROP INDEX i;

EXPLAIN (ANALYZE ON, BUFFERS ON) SELECT count(*) FROM t WHERE v=5;

QUERY PLAN

Aggregate (cost=1717.71..1717.72 rows=1 width=0) (actual
time=75.539..75.541 rows=1 loops=1)

 Buffers: shared hit=443

 -> Seq Scan on t (cost=0.00..1693.00 rows=9883 width=0) (actual
time=20.987..58.050 rows=9993 loops=1)

 Filter: (v = 5)

 Buffers: shared hit=443

This shows the sequential scan running against the full 443 pages of data this table is
known to occupy, instead of the much smaller count the earlier query executed in.

Index creation and maintenance
Creating an index is one of the most intensive operations you can do on a database.
When populating a database using tools such as pg_restore, the time spent building
indexes can be the longest part of the data loading. And you can't necessarily just
ignore them afterwards. Index rebuilding can be an expected part of regular database
maintenance, particularly in the case where many rows (but not all of them) are
being deleted from a section of an index. There's more information about that topic
back in Chapter 7, Routine Maintenance.

Unique indexes
A unique indexes enforces that you won't have more than one row containing a
particular key value. These are quite common in proper database design, both for
improving performance—an indexed unique lookup is normally fast—as well as
data integrity, preventing erroneous duplications of data. Only B-tree indexes can
currently be used as unique ones.

There are three ways you can create a unique index, only two of which are
recommended. The first you saw at the beginning of the chapter walkthrough: when
you mark a field as PRIMARY KEY, a unique index is created to make sure there are no
key duplicates.

Chapter 9

[223]

But a primary key is just a specially marked case of having a unique constraint on a
table. The following two statement sets give almost identical results:

CREATE TABLE t(k serial PRIMARY KEY,v integer);

CREATE TABLE t(k serial,v integer);

ALTER TABLE t ADD CONSTRAINT k_key UNIQUE (k);

Except, the primary key case is labeled better in the system catalog (and is therefore
preferable, from an internal database documentation standpoint). Note that the index
created for the purpose of enforcing uniqueness is a perfectly functional index usable
for speeding up queries. There's no need in this case to create a regular index on k so
that you can look up values by the key faster, the unique index provides that already.

It's also possible to directly create an index using CREATE UNIQUE INDEX. This
is considered a bad form and you should avoid doing so. It effectively creates a
constraint, without labeling it as such in the list of constraints. If you want values
to be unique, add a constraint; don't add the index manually.

One caveat when using unique indexes is that null values are not considered equal
to one another. This means that you could have several entries inserted such that
each have a null value for their key. To avoid the problems this can introduce, it's
recommended to always add NOT NULL to the fields that are going to participate
in the index when the table is created. Rejecting null values when they don't make
sense in your data is a good habit to adopt beyond this particular issue—most fields
in a well designed database will reject null values.

Concurrent index creation
When you build an index normally, it locks the table against writes. This means
that reads using SELECT against the table will work fine, but any attempt to insert,
update, or delete a row in it will block until the index creation is finished. The
statement will pause and wait for the index lock to be released, instead of throwing
an error immediately. As index rebuilding on large tables can easily take hours, that's
a problem. There's some potential for a deadlock producing error here as well, if the
client backend already had some locks on that table before the index build began.

Accordingly, on any production database with significant table sizes, where a user
being blocked for a long time is an issue, you usually want to build indexes using
CREATE INDEX CONCURRENTLY. This is not the default because the concurrent index
build is much less efficient than the standard one that takes a lock. It scans the table
once to initially build the index, then makes a second pass to look for things added
after the first pass.

Database Indexing

[224]

There is also a risk to any concurrent index build on indexes that enforce some
constraint, such as any UNIQUE index. If an unacceptable row is found during
that second pass, such as a uniqueness violation, the concurrent index build fails,
having wasted resources without accomplishing anything. The resulting index will
be marked INVALID when viewed with the psql utility and will not be usable for
queries. But changes to the table will still update values in it—wasted overhead. You
can recover from this situation by dropping the index and trying to build it again,
presuming you know the same issue won't pop up again (for example, all duplicate
values have been erased). You can also use REINDEX to fix it, but that can't be done
concurrently; it will take the usual write lock the whole time.

Clustering an index
CLUSTER works by making a whole new copy of the table, sorted by the index you
asked to traverse the original in. It's as if you had inserted them in that order in the
first place. Once built, the original copy of the data is dropped. CLUSTER requires an
exclusive lock on the table and enough disk space to hold the second, reorganized
copy—essentially, twice the amount of disk space, temporarily. You should run
ANALYZE afterwards in order to update the statistics associated with this table,
to reflect its new ordering.

Clustering is useful for getting faster results from range-based queries, when
selecting a set of values that is between two end points (with the beginning or end
being considered an end point in that context). It can generally speed up access to
fragmented data that might have been introduced from any number of sources.

Clustering is a one-time act. Future insertion does not respect the clustered order,
even though the database does remember what index you last used if you
CLUSTER again.

Starting in PostgreSQL 9.0, the way VACUUM FULL is executed uses the same basic
logic as CLUSTER: rewrite the whole thing, instead of trying to clean up problem
spots inefficiently.

Fill factor
When you create a new index, not every entry in every index block is used. A small
amount of free space, specified by the fillfactor parameter, is left empty. The idea is
that the first set of changes to that index either updates or insertions can happen on
the same index blocks, therefore reducing index fragmentation.

Chapter 9

[225]

The default fillfactor for B-tree indexes is 90%, leaving 10% free space. One situation
where you might want to change this is a table with static data, where the data
won't change after index creation. In this case, creating the index to be 100% full
is more efficient:

CREATE INDEX i ON t(v) WITH (FILLFACTOR=100);

On tables that are being populated randomly, or ones that are heavily updated,
reducing the fillfactor from its default can reduce index fragmentation, and therefore
the amount of random disk access required to use that index once it's more
heavily populated.

Reindexing
When indexes become less efficient due to being spread over disk inefficiently, either
scattered around too randomly or too bloated with now unused values, the index
will benefit from being rebuilt. This is most easily done with the REINDEX command,
and that can't be done concurrently. More information about detecting when indexes
need to be rebuilt and how to do so is in Chapter 7, Routine Maintenance.

Index types
Indexing in PostgreSQL is completely programmable. It's straightforward (albeit
not quite easy) to create a totally custom index type, even with customized operators
for how to compare values. A few unusual index types are included with the
core database.

B-tree
The standard index type is the B-tree, where the B stands for balanced. A balanced
tree is one where the amount of data on the left and right side of each split is kept
even, so that the amount of levels you have to descend to reach any individual row
is approximately equal.

The B-tree can be used to find a single value or to scan a range, searching for key
values that are greater than, less than, and/or equal to some value. They also work
fine on both numeric and text data. Recent versions of PostgreSQL (8.3 and later)
can also use an index to find (or avoid) NULL values in a table.

Database Indexing

[226]

Text operator classes
It's possible to use an index on a text field to speed finding rows that start with a
substring of interest. A query like this that uses LIKE to match the start of a string:

SELECT * FROM t WHERE t.s LIKE 'start%';

It can use an index on that string field to return answers more quickly. This is not
useful if your comparison tries to match the middle or end of the column though. In
addition, if your database uses something other than the simple C locale, the default
way values are compared in indexes, can't be used for this purpose. You'll need
to create the index using a special mode for locale sensitive character by character
comparisons, like the following:

CREATE INDEX i ON t (s text_pattern_ops);

In this example, s would be a text field; there are different operators for varchar
and char types. In addition to LIKE, this form of index can also be used for some
types of text regular expression matches too.

See the Operator Classes and Operator Families section of the PostgreSQL manual for
more information on this topic. You can confirm your locale, and decide whether
you need to use this approach, by looking at the lc_collate parameter:

postgres=# show lc_collate;

 lc_collate

 en_US.UTF-8

This sample database is not using the C locale, and therefore would need to use the
text_pattern_ops operator class in order for the LIKE queries to use an index on
a text field.

Hash
The hash index type can be useful in cases where you are only doing equality (not
range) searching on an index, and you don't allow NULL values in it. However,
it is easy for hash indexes to become corrupt after a database crash, and therefore
ineffective for queries until manually rebuilt. The advantages to using a hash index
instead of a B-tree are small compared to this risk. You normally shouldn't ever use
the hash index type. But if you are willing to spend a considerable amount of time
analyzing its usefulness and ensuring the index will be rebuilt if it becomes corrupt,
it is possible you can find a purpose for them.

Chapter 9

[227]

GIN
Regular indexes are optimized for the case where a row has a single key value
associated with it, so that the mapping between rows and keys is generally simple.
The Generalized Inverted Index (GIN) is useful for a different sort of organization.
GIN stores a list of keys with what's called a posting list of rows, each of which
contain that key. A row can appear on the posting list of multiple keys too.

With the right design, GIN allows efficient construction and search of some
advanced key/value data structures that wouldn't normally map well to a database
structure. It leverages the ability to customize the comparison operator class used for
an index, while relying on a regular B-tree structure to actually store the underlying
index data.

GIN is useful for indexing array values, which allows operations such as searching
for all rows where the array column contains a particular value, or has some
elements in common with an array you're matching against. It's also one of the ways
to implement full-text search. There are several examples that use GIN that suggest
how it can be utilized to build custom data storage among the example PostgreSQL
contrib modules.

Anytime you're faced with storing data that doesn't match the usual single key
to single value sort of structure regular database indexes expect, GIN might
be considered as an alternative approach. It's been applied to a wide range of
interesting indexing problems.

GiST
A Generalized Search Tree (GiST) provide a way to build a balanced tree structure
for storing data, such as the built-in B-tree, just by defining how keys are to be
treated. This allows using the index to quickly answer questions that go beyond
the usual equality and range comparisons handled by a B-tree. For example, the
geometric data types that are included in PostgreSQL include operators to allow
an index to sort by the distance between items and whether they intersect.

GiST can also be used for full-text search, and it too has a very rich library of
contrib modules that use its features. When you need a really customized type of
index, with operators that go beyond the normal comparison ones, but the structure
is still like a tree, consider using GiST when a standard database table doesn't
perform well.

Database Indexing

[228]

Advanced index use
Many PostgreSQL users will only ever use simple B-tree indexes on a single column.
There are of course a few ways to build more complicated ones too though.

Multicolumn indexes
Consider a database table that is storing a category and a subcategory for a series
of data. In this case, you don't expect to ever specify a subcategory without also
providing a category. This is the sort of situation where a multi-column index
can be useful. B-tree indexes can have to up 32 columns they index, and anytime
there's a natural parent/child relationship in your data this form of index might
be appropriate.

After creating an index for that sort of situation:

CREATE INDEX i_category ON t (category,subcategory);

The index could be used for queries that look like the following:

SELECT * FROM t WHERE category='x' and subcategory='y';

SELECT * FROM t WHERE category='x';

But it is unlikely to be useful for the following form:

SELECT * FROM t WHERE subcategory='y';

Had you instead created two indexes for both category and subcategory, those could
satisfy either individual type of search, as well as the combined one (combining with
a bitmap index scan). However, the result would likely be larger and involve more
overhead to update than the multicolumn version, the downside to that flexibility,
as well as being a bit less efficient when a query selecting on both columns is run.

Indexes for sorting
B-tree indexes store their entries in ascending order. Starting in PostgreSQL 8.3, the
nulls are also stored in them, defaulting to last in the table. You can reverse both of
those defaults, such as the following:

CREATE INDEX i ON t(v DESC NULLS FIRST);

The query planner will use an index that returns rows in sorted order in some cases
when ORDER BY has been specified. Generally, this only happens when a small
number of rows are being returned by the table, which is the opposite of what you
might expect. This is because reading the index blocks is optional. You can always
derive the data by sorting the data, and the planner considers index reads to be

Chapter 9

[229]

random instead of sequential access. If large percentage of the table is being read,
directly reading the table—sequentially—and sorting the result will have a lower
estimated cost than the redundant disk access of reading both the random index
blocks and the data blocks too. Expecting to see an index used for ORDER BY, and
instead having all the data read in and sorted, is one way you can end up with
considerable unexpected disk activity, in the form of temporary sorting files.

If you are using ORDER BY and LIMIT, an index is much more likely to be used. In
that case, an index might immediately return the limited number of rows needed
using the index, while a standard query will have to read all the rows and sort just
to return any of them.

Partial indexes
Indexes do not have to cover the entirety of a table. You can create smaller, targeted
indexes that satisfy a particular WHERE clause, and the planner will use those when
appropriate. For example, consider the case where you are tracking a set of customer
accounts, and want to flag a small number of them for special processing; let's just
say they are flagged as "interesting" with a boolean of that name. You could then
create a partial index:

CREATE INDEX accounts_interesting_index ON accounts WHERE interesting IS
true;

(That's intentionally more verbose than necessary just to demonstrate the syntax.)
You'd expect this index to be very small, relative to one that included every account.
And it would return the list of interesting accounts quite quickly, because the index
will only contain them—not the whole table. As always, this index could also be
combined with others using a bitmap index scan.

Expression-based indexes
The classic example for an expression-based index is when you typically search
based on a name only after converting it to a particular case:

CREATE INDEX i_lower_idx ON t (lower(name));

SELECT * FROM t WHERE lower(name) = 'x';

This query will run using that expression index, which turns it into a single value
indexed lookup in the table. An index based on the username without converting
to lower case first will not be useful in that context.

Database Indexing

[230]

One non-obvious thing you can implement using partial indexes is forcing
uniqueness for an expression, instead of just a combination of fields:

CREATE UNIQUE INDEX I ON lower(username);

This would only allow one row to exist at any time with that value for the
expression. You might want to handle this as a constraint instead though.

Note that every time you insert or update an entry in a table with this sort of index,
the function used needs to be called to compute an appropriate value for the index.
This makes the insert/update overhead of this sort of index higher than one that just
uses a column list. Even more so than regular indexes, the index needs to give you
something that's selective against your data for the overhead of building the index
to be worthwhile.

Indexing for full-text search
PostgreSQL includes a capable full-text search (FTS) package, available as a core
feature starting in 8.3. Both GIN and GiST indexes can be used to accelerate text
searches done that way. The basic idea is that GIN is better suited for relatively
static data, while GiST performs better with frequently updated, dynamic text. The
trade-offs involved in choosing between those index types are heavily documented
in the PostgreSQL manual chapter devoted to full-text search.

That documentation can also be considered a tutorial on the relative strengths
and weaknesses of GIN vs. GiST, which can be useful when trying to decide
which of them to use for other applications. For example, the hstore key/value
implementation available as a contrib module can be handy for efficiently storing
that sort of data when it doesn't need to have full SQL semantics, an approach
popularized by the NoSQL moment recently. There are both GIN and GiST
implementations of hstore available, and choosing between the two is complicated.
Knowing more about their relative insert vs. query performance characteristics, as
seen from the context of FTS, provides a useful vantage point to compare the two
that you can extrapolate from.

Chapter 9

[231]

Summary
Choosing what indexes to add to your tables remains one of those areas where
creative tuning work can still trump mechanical attempts to measure and react.
There are some index tuning wizards available for other databases, but even the best
of them just provide suggestions instead of dependable advice. It's important to be
systematic about your indexes though. Because adding an index increases overhead
every time you add or change rows in a table, each index needs to satisfy enough
queries to justify how much it costs to maintain. There is more information about
determining if the indexes on your system are working effectively in Chapter 11,
Database Activity and Statistics.

Measure actual block reads to determine whether an index is truly effective.
Queries cannot be answered using only the data in an index. The data blocks
must be consulted for row visibility information in all cases.
An index is only useful if it is selective; it can be used to only return a small
portion of the rows in a table.
Indexes can be quite large relative to their underlying table.
If two useful indexes exist to answer a query, they can be combined, and
that's preferable in many cases to using a multi-column index.
Building an index can take a long time, and will block activity if not done
with the concurrent option enabled.
Indexes can require periodic rebuilding to return them to optimum
performance, and clustering the underlying data against the index order can
also help improve their speed and usability for queries.
A variety of advanced techniques are available to build customized index
structures in PostgreSQL, for situations where the standard B-tree index
on simple fields isn't powerful enough.

•

•

•

•

•

•

•

•

Query Optimization
For some database administrators and application developers, query optimization
is the most important part of database performance tuning. Earlier chapters have
wandered some distance from there, because if your fundamental server setup
isn't good, no amount of query tuning will help you. But things like selecting good
hardware for a database server are rare. Figuring out why a query is slow and how
to improve it is something you can expect to happen all the time. This is particularly
true because query plans drift over time, and some aspects of your database will
become less efficient. Maintenance to improve the latter problem is covered in
the next few chapters. How queries execute and improving that execution is this
chapter's topic.

Sample data sets
In order to show you queries to optimize, you need data. So far randomly generated
data for a small number of tables has been good enough for that, but that has its
limits and they were reached in the last chapter.

Obtaining sample data of a significant size for benchmarking purposes is a never
ending struggle, because the pace of hardware progress means yesteryear's massive
test database can be today's trivial workload. A listing that's kept up-to-date with
useful new sources for test databases is at http://wiki.postgresql.org/wiki/
Sample_Databases and some of these are part of a PostgreSQL sample database
project, which has several examples worth checking out.

Query Optimization

[234]

Pagila
The Pagila database is a particularly interesting sample because it showcases
many advanced PostgreSQL features. It relies heavily on stored procedures and
even partitions some of its data. The main reason it's not used for examples here is
because it's very small, only a few megabytes in size. The non-free license on the
documentation for the original database it's based on (Sakila, a part of MySQL)
makes it problematic to quote from here too.

Dell Store 2
The Dell Store 2 was originally distributed by Dell at http://linux.dell.com/
dvdstore/ as part of an effort to create a vendor neutral comparison test. It includes
everything from the database to an e-commerce web application. Their sample
store sells DVDs to customers and includes products, orders, inventory, and
customer history.

A PostgreSQL port of the database part of the Dell Store application is available from
the sample databases project at http://pgfoundry.org/projects/dbsamples/.

While the benchmark can theoretically be targeted to create three sizes, only the
small (10 MB) version is available for PostgreSQL so far. The data generators for the
medium (1 GB) and large (100 GB) stores haven't been implemented for PostgreSQL
yet. This makes the Dell Store 2 a modest test database for examples here, but not
a real representative of a serious workload by modern standards.

Obtaining and installing Dell Store 2 can be very simple:

$ wget http://pgfoundry.org/frs/download.php/543/dellstore2-normal-
1.0.tar.gz

$ tar xvfz dellstore2-normal-1.0.tar.gz

$ cd dellstore2-normal-1.0/

$ createdb dellstore2

$ createlang plpgsql dellstore2

$ psql -f dellstore2-normal-1.0.sql -d dellstore2

$ psql -d dellstore2 -c "VACUUM VERBOSE ANALYZE"

With indexes and related overhead, the result is actually 21 MB:

$ psql -d dellstore2 -c "SELECT pg_size_pretty(pg_database_
size('dellstore2'))"

 pg_size_pretty

 21 MB

Chapter 10

[235]

Which means that even the tiny default shared_buffers on most systems can hold
the whole set of data, but the queries aren't completely trivial. Here are the major
tables and indexes:

 table | size

--------------------------------+---------

 public.customers | 3808 kB

 public.orderlines | 2840 kB

 public.cust_hist | 2368 kB

 public.products | 808 kB

 public.orders | 800 kB

 public.inventory | 400 kB

 index | size

--------------------------------+---------

 public.ix_orderlines_orderid | 1336 kB

 public.ix_cust_hist_customerid | 1080 kB

 public.ix_cust_username | 544 kB

 public.customers_pkey | 368 kB

 public.ix_order_custid | 232 kB

 public.orders_pkey | 232 kB

 public.ix_prod_special | 192 kB

 public.ix_prod_category | 192 kB

 public.products_pkey | 192 kB

 public.inventory_pkey | 192 kB

The examples in this chapter will be using the Dell Store 2 example installed as
shown before, unless otherwise noted.

The structure of this data is easy to understand if you've ever shopped online:

There are a number of products the store sells, each of which fits into
a category
The store has customers
Customers place orders
Each order has a number of lines to it, each of which references the product
being purchased
A customer history is saved listing all the products that customer has
ever ordered

•

•

•

•

•

Query Optimization

[236]

EXPLAIN basics
If you have a query that's running slowly, the first thing to try is running it with
EXPLAIN before the statement executing. This displays what's called a query plan,
the list of what's expected to happen when that query is executed. If you instead use
EXPLAIN ANALYZE before the statement, you'll get both the estimation describing
what the planner expected, along with what actually happened when the query ran.
Note that this form will actually execute the statement as if you'd run it manually.
Consider the following statement:

EXPLAIN ANALYZE DELETE * FROM t;

This is not only going to show you a query plan for deleting those rows, it's going to
delete them—that's the only way to know for sure how long actually executing the
plan is going to take. It's much harder to get a consistent setup to compare timing
of operations that do INSERT, UPDATE, or DELETE using EXPLAIN ANALYZE because
the act of collecting the data will change what a subsequent execution of the same
statement will do.

Timing overhead
Assume you're executing a simple query to count all the customers in the database,
and want to time how long this takes:

dellstore2=# \timing

Timing is on.

dellstore2=# SELECT count(*) FROM customers;

 count

 20000

Time: 7.994 ms

You might then be curious what query plan was used to get this result. The amount
of time taken to determine that, may shock you:

dellstore2=# EXPLAIN ANALYZE SELECT count(*) FROM customers;

QUERY PLAN

Aggregate (cost=726.00..726.01 rows=1 width=0) (actual
time=68.836..68.838 rows=1 loops=1)

 -> Seq Scan on customers (cost=0.00..676.00 rows=20000 width=0)
(actual time=0.012..33.609 rows=20000 loops=1)

 Total runtime: 68.934 ms

Time: 69.837 ms

Chapter 10

[237]

This fairly trivial query was picked because it demonstrates something close
to a worst-case here, where instrumenting the query causes the result to slow
dramatically, to almost 10X as long. Using EXPLAIN ANALYZE is great for getting real
times, but you shouldn't assume the exact proportions or time to be the same when
running the query normally.

Hot and cold cache behavior
Returning to the regular version of the query seen previously, that it executed in
7.994 milliseconds. This represents "hot" cache behavior, meaning that the data
needed for the query was already in either the database or operating system caches.
It was left behind in cache from when the data was loaded in the first place. Whether
your cache is hot or cold (not in the cache) is another thing to be very careful of. If
you run a query twice with two different approaches, the second will likely be much
faster simply because of caching, regardless of whether the plan was better or worse.

You can look at how long a query against the entire table takes as a way to measure
the effective transfer rate for that table. In the hot cache case, it gives you an idea
how fast data moves between two sections of memory:

SELECT pg_size_pretty(CAST(pg_relation_size('customers') / 7.994 * 1000
as int8)) AS bytes_per_second;

 bytes_per_second

 465 MB

As this was run on a simple laptop, getting 456 MB/s of rows processed by a query
is respectable. In this case, repeatedly running the query takes around the same
amount of time each run, which means that the amount cached is staying constant
and not impacting results. In this case, it's 100% cached.

Clearing the cache
The exact way you clear all these caches out, to get cold cache performance
again, varies based on operating system. Just stopping the database server isn't
enough, because the operating system cache can be expected to still have plenty
of information cached. On Linux, you can use the drop_caches feature to discard
everything it has in its page cache. Here's a complete example of cleaning the data
out of memory for this database on Linux:

$ pg_ctl stop

$ sudo su –

sync

Query Optimization

[238]

echo 3 > /proc/sys/vm/drop_caches

logout

$ pg_ctl start –l $PGLOG

The sync here is to try and flush all data to disk before we just blow away the caches.
This drop_caches feature on Linux is not intended for regular production server
use, it is more of a debugging feature that's potentially dangerous.

Re-running the same benchmark shows quite different performance:

$ psql -d dellstore2

dellstore2=# \timing

Timing is on.

dellstore2=# SELECT count(*) FROM customers;

 count

 20000

Time: 204.738 ms

dellstore2=# SELECT pg_size_pretty(CAST(pg_relation_size('customers') /
204.738 * 1000 as int8)) AS bytes_per_second;

 bytes_per_second

 18 MB

Now you're seeing hard drive sequential read speeds—18 MB/s from a laptop hard
drive, and this data isn't necessarily even contiguous. It's hard to achieve full drive
speed on something so small though.

Repeating the query now returns to the original speed we know to expect from a hot
cache run:

dellstore2=# SELECT count(*) FROM customers;

Time: 8.067 ms

Tests against real data sets need to be very careful to recognize whether their data
is already in the cache or not. The usual technique is to run each query three times.
If the first is much slower than the second and third, it probably started with a cold
cache. If the times are all the same, the cache was likely hot before starting. And if
all three vary in some other way, there's probably another variable involved besides
just whether the data is in cache. It may take a larger number of queries to extract the
pattern for why speeds vary.

Chapter 10

[239]

Examples in this chapter are all run with a hot cache, so you're seeing processing
time but not disk access time. This makes them slightly unrealistic, but the Dell Store
sample available for PostgreSQL is not big enough to be uncached for very long on
modern hardware. The larger scale versions haven't been ported to the database yet.

Query plan node structure
EXPLAIN output is organized into a series of plan nodes. At the lowest level there are
nodes that look at tables, scanning them, or looking things up with an index. Higher
level nodes take the output from the lower level ones and operate on it. When you
run EXPLAIN, each line in the output is a plan node.

Each node has several numeric measurements associated with it as well:

EXPLAIN ANALYZE SELECT * FROM customers;

QUERY PLAN

Seq Scan on customers (cost=0.00..676.00 rows=20000 width=268) (actual
time=0.011..34.489 rows=20000 loops=1)

 Total runtime: 65.804 ms

This plan has one node, a Seq Scan node. The first set of numbers reported
are the plan estimates, which are the only thing you see if you run EXPLAIN
without ANALYZE:

cost=0.00..676.00: The first cost here is the startup cost of the node.
That's how much work is estimated before this node produces its first row
of output. In this case, that's zero, because a Seq Scan immediately returns
rows. A sort operation is an example of something that instead takes a while
to return a single row. The second estimated cost is that of running the entire
node until it completes. It may not—a node with a LIMIT on it for example
may stop long before retrieving all estimated rows.
rows=20000: The number of rows this node expects to output if it runs
to completion.
width=268: Estimated average number of bytes each row output by this node
will contain. For this example, 20000 rows at 268 bytes each means this node
expects to produce 5,360,000 bytes of output. This is slightly larger than the
table itself (3.8 MB) because it includes the overhead of how tuples are stored
in memory when executing in a plan.

•

•

•

Query Optimization

[240]

The "actual" figures show how well this query really ran:

actual time=0.011..34.489: The actual startup cost wasn't quite zero; it
took a small fraction of time to start producing output. Once things started, it
took 34.489 seconds to execute this plan node in total.
rows=20000: As expected, the plan output 20000 rows. Differences between
the expected rows and the number actually produced by a node are one of
the most common sources of query problems, where the optimizer made a
bad decision.
loops=1: Some nodes, such as ones doing joins, execute more than once. In
that case, the loops value will be larger than one, and the actual time and
row values shown will be per loop, not total. You'll have to multiply by the
number of loops in order to get a true total.

How decisions are made using this data requires knowing a bit more about how the
estimated costs are computed.

Basic cost computation
The job of the query optimizer is to generate many possible plans that could be used
to execute a query, then pick the one with the lowest cost to actually execute. The
cost computations are done using arbitrary units only loosely associated with real-
world execution cost.

seq_page_cost: How long it takes to read a single database page from disk
when the expectation is you'll be reading several that are next to one another,
a sequential read of a section of disk. The rest of the cost parameters are
essentially relative to this value being the reference cost of 1.0.
random_page_cost: Read cost when the rows involved are expected to be
scattered across the disk at random. This defaults to 4.0.
cpu_tuple_cost: How much it costs to process a single row of data. The
default is 0.01.
cpu_index_tuple_cost: Cost to process a single index entry during an
index scan. The default is 0.005, lower than what it costs to process a row
because rows have a lot more header information (such as the visibility
xmin and xmax) then an index entry does.
cpu_operator_cost: Expected cost to process a simple operator or function.
If the query needs to add two numbers together, that's an operator cost, and
it defaults to the very inexpensive 0.0025.

•

•

•

•

•

•

•

•

Chapter 10

[241]

How these all numerically compare is easier to see in a table, showing a speed ratio
relative to the reference value for seq_page_cost:

Parameter Default value Relative speed
seq_page_cost 1.0 Reference
random_page_cost 4.0 4X slower
cpu_tuple_cost 0.01 100X faster
cpu_index_tuple_cost 0.005 200X faster
cpu_operator_cost 0.0025 400X faster

We can use these numbers to compute the cost shown in the previous example.
A sequential scan on "customers" has to read every page in the table and process
every resulting row. If you look at the statistics the optimizer uses to estimate the
pages in the table and the number of rows, then combine them with its internal
cost parameters:

SELECT

 relpages,

 current_setting('seq_page_cost') AS seq_page_cost,

 relpages *

 current_setting('seq_page_cost')::decimal AS page_cost,

 reltuples,

 current_setting('cpu_tuple_cost') AS cpu_tuple_cost,

 reltuples *

 current_setting('cpu_tuple_cost')::decimal AS tuple_cost

FROM pg_class WHERE relname='customers';

relpages | 476

seq_page_cost | 1

page_cost | 476

reltuples | 20000

cpu_tuple_cost | 0.01

tuple_cost | 200

Query Optimization

[242]

Add the cost to read the pages (476) to the cost to process the rows (200) and you
get 676.00, exactly the cost shown by the EXPLAIN plan for the sequential scan in the
previous section. We're not going to show how to compute the costs for every plan
shown here, but this example shows you how you might do that yourself for ones
you're particularly interested in. Ultimately every plan node breaks down into these
five operations: sequential read, random read, process a row, process an index entry,
or execute an operator. Everything else builds more complicated structures based on
these basics.

Estimated costs and real world costs
Now, if you were paying attention to Chapter 3, Database Hardware Benchmarking, you
might just be wondering why the random reads are only considered 4X as expensive as
sequential ones. In reality, that ratio is closer to 50:1. Unfortunately, building a robust
query cost model isn't as easy as measuring each of the underlying real-world costs the
theoretical units model, then setting the costs based on those. One of the most obvious
ways that the planner costs don't reflect reality is that the optimizer doesn't know what
pages are in the database or operating system cache. Random page reads often result
from index scans. And the data associated with the most used indexes is also the most
likely to be in the database and operating system cache. So even though the actual
random page cost is much more expensive than 4X a sequential one, the odds of an
indexed scan reading a random page finding it in cache are quite high.

In real-world PostgreSQL deployments, you're not going to find people changing
random_page_cost to a higher value that reflects the real random read speed of
their drives relative to their sequential speeds. Instead, you'll probably find them
decreasing it. On systems with a lot of RAM where much of the database is known
to be in memory, dropping random_page_cost to 2.0 or even lower is a very
common optimization.

Explain analysis tools
Explain plans are pretty complicated to read. Figuring out which portion of the plan
is causing the main performance issues is not necessarily obvious. A few tools have
sprung up to help with analyzing them, making it easier to identify the slow portions.

Visual explain
Complicated query plans can be difficult to read, with only the indentation level
suggesting how nodes that fit into one another are connected. One way to help
visualize complicated plans is to graph them using visual explain, a feature
available in the pgAdmin III tool: http://www.pgadmin.org/.

Chapter 10

[243]

Seeing how the nodes fit together for the more complicated structures like multi-
level joins is extremely valuable for learning how they work. One useful bit of trivia
for the graphic display used: when you see lines connecting nodes in the plan, their
thickness is proportional to how costly that section of the plan is. You can get an idea
where the parts taking a while to execute are just by looking for the wide lines; the
thin ones aren't contributing as heavily to the query runtime.

Verbose output
If you're interested in what columns are actually being passed around by your
queries, an explain plan using VERBOSE will show them:

EXPLAIN VERBOSE SELECT * FROM customers;

QUERY PLAN

Seq Scan on public.customers (cost=0.00..676.00 rows=20000 width=268)

 Output: customerid, firstname, lastname, address1, address2, city,
state, zip, country, region, email, phone, creditcardtype, creditcard,
creditcardexpiration, username, password, age, income, gender

This can be valuable in extremely complicated queries where it's not easy to figure
out on your own, or when running queries generated by programs like an Object
Relational Mapper (ORM) that sometimes include more information than they
necessarily need to.

Machine readable explain output
Starting in PostgreSQL 9.0, there are several new formats you can produce EXPLAIN
output in. In addition to the old text format, you can output in XML and JSON,
which allows analysis using the rich library of tools found in many programming
languages for operating on that sort of data. You can also produce plans in YAML
format, which is interesting because it is both machine parsable and arguably easier
to read than the standard format. Consider this relatively simple plan:

EXPLAIN SELECT * FROM customers WHERE customerid>1000 ORDER BY zip;

QUERY PLAN

Sort (cost=4449.30..4496.80 rows=19000 width=268)

 Sort Key: zip

 -> Seq Scan on customers (cost=0.00..726.00 rows=19000 width=268)

 Filter: (customerid > 1000)

Query Optimization

[244]

The same plan output in YAML format is much larger, but quite easy to read too:

EXPLAIN (FORMAT YAML) SELECT * FROM customers WHERE customerid>1000 ORDER
BY zip;

 QUERY PLAN

 - Plan: +

 Node Type: Sort +

 Startup Cost: 4449.30 +

 Total Cost: 4496.80 +

 Plan Rows: 19000 +

 Plan Width: 268 +

 Sort Key: +

 - zip +

 Plans: +

 - Node Type: Seq Scan +

 Parent Relationship: Outer +

 Relation Name: customers +

 Alias: customers +

 Startup Cost: 0.00 +

 Total Cost: 726.00 +

 Plan Rows: 19000 +

 Plan Width: 268 +

 Filter: (customerid > 1000)

PostgreSQL 9.0 is new enough that this feature hasn't been utilized heavily yet by
developers. The hope is that generating machine parsable output will also make it
far easier to write programs to read EXPLAIN output, and therefore grow the number
of tools that assist with query analysis work.

Plan analysis tools
There are already some tools available on the web that already know how to do the
dirty work to analyze the old text format explain output. The best of the currently
available ones is at http://explain.depesz.com/ where you can submit a plan
and get a version highlighting potential problem areas. For example, if the estimated
row counts don't match the actual ones, that jumps right out in the color coded
plan output.

Chapter 10

[245]

Assembling row sets
To understand how to optimize the way a query runs, you have to first understand
the options for how it can be executed. Now that you're armed with some basics
on how nodes fit together and costs are computed, the next stage to understanding
how queries work is to see the options for bottom level plan nodes that are usually
selecting rows.

Tuple id
Each row in the database has a tuple id, a number visible as the system column
named ctid in each row. You can use these to look up a row:

SELECT ctid,customerid FROM customers limit 3;

 ctid | customerid

-------+------------

 (0,1) | 1

 (0,2) | 2

 (0,3) | 3

EXPLAIN SELECT customerid FROM customers WHERE ctid='(0,1)';

 QUERY PLAN

 Tid Scan on customers (cost=0.00..4.01 rows=1 width=4)

 TID Cond: (ctid = '(0,1)'::tid)

These TID sequences cannot be relied upon as a stable way to access a particular row
outside of a transaction, because common operations including UPDATE will change
them. If you're referring to a row more than one in the same transaction, perhaps in
a procedural programming language, the TID scan can be a quick way to operate a
second time on a row located earlier. The ctid value can also be used to distinguish
between rows that are otherwise identical, for example when trying to eliminate
duplicate rows.

Query Optimization

[246]

Object id
In earlier versions of PostgreSQL, every database row had a unique object
identification number called an OID that could be used to identify it. The overhead
of storing these OIDs was considered too high, and as of PostgreSQL 8.1 they now
default to off. You can still include them in a table by specifying CREATE TABLE…
WITH OIDS, and the system catalog tables include them. Using an OID to find a
record works the same as any other indexed scan:

SELECT oid,relname FROM pg_class WHERE relname='customers';

 oid | relname

-------+-----------

 16736 | customers

EXPLAIN SELECT relname FROM pg_class WHERE oid=16736;

QUERY PLAN

Index Scan using pg_class_oid_index on pg_class (cost=0.00..8.27 rows=1
width=64)

 Index Cond: (oid = 16736::oid)

There's little reason to use an OID for your own tables when the more portable
primary key type can be used instead.

Sequential scan
The previous examples (and many in Chapter 9, Database Indexing) have shown you
plenty of examples of tables being scanned sequentially. You can expect a Seq Scan
when there isn't a useful index, or when such a large portion of the table is expected
to be returned such that using an index would just add needless overhead. They'll
also be used when there is only a very small amount of data to access; the index
overhead is disproportionately large if the table only takes up a few pages on disk.

Note that a Seq Scan must read through all the dead rows in a table, but will not
include them in its output. It's therefore possible for their execution to take much
longer than it would be expected to produce all the required output, if the table has
been badly maintained and is quite bloated with dead rows.

Chapter 10

[247]

Index scan
An index scan is what you want if your query needs to return a value fast. If an index
that is useful to satisfy a selective WHERE condition exists, you'll get one in a query
plan that looks like the following:

EXPLAIN ANALYZE SELECT * FROM customers WHERE customerid=1000;

QUERY PLAN

Index Scan using customers_pkey on customers (cost=0.00..8.27 rows=1
width=268) (actual time=0.029..0.033 rows=1 loops=1)

 Index Cond: (customerid = 1000)

 Total runtime: 0.102 ms

The main component to the cost here are the two random page reads (4.0 each
making a total of 8.0), both the index block and the one the database row is in. Recall
that the data blocks must always be read in PostgreSQL, even if the index scan is just
being used to determine if a row exists, because visibility must be checked in the row
data. This will however, turn into random disk seeks against the actual table, the true
overhead of which depends on how much of it is already cached.

Regular index scans are the only type that will return rows that are already sorted.
This makes them preferred by queries using a LIMIT, where the sort cost might
otherwise be proportional to the full table size. There are also some upper node
types that need input in sorted order.

Bitmap heap and index scans
As mentioned in the last chapter, PostgreSQL is capable of combining indexes
together when two of them are relevant for answering a query. The customers table
in the Dell Store example has an index on both the customerid and the username.
These are both pretty boring bits of data:

SELECT customerid,username from customers limit 3;

 customerid | username

------------+----------

 1 | user1

 2 | user2

 3 | user3

Query Optimization

[248]

The following somewhat contrived query only returns two rows, but it can use both
indexes to accelerate that, and after tweaking the number of values referenced it's
possible to demonstrate that:

SELECT customerid,username FROM customers WHERE customerid<10000 AND
username<'user100';

 customerid | username

------------+----------

 1 | user1

 10 | user10

EXPLAIN ANALYZE SELECT customerid,username FROM customers WHERE
customerid<10000 AND username<'user100';

QUERY PLAN

Bitmap Heap Scan on customers (cost=5.71..370.28 rows=95 width=13)
(actual time=0.036..0.043 rows=2 loops=1)

 Recheck Cond: ((username)::text < 'user100'::text)

 Filter: (customerid < 10000)

 -> Bitmap Index Scan on ix_cust_username (cost=0.00..5.69 rows=191
width=0) (actual time=0.019..0.019 rows=2 loops=1)

 Index Cond: ((username)::text < 'user100'::text)

 Total runtime: 0.099 ms

Here the query optimizer thought based on its statistics that it might have one or
two hundred rows returned by each of the two relevant indexes to sort through, so
using the index to find them out of the 20,000 possible rows and then AND-ing the two
conditions together was considered the faster approach. It had no way to know that
just searching on username would quickly find the only two matching rows.

Bitmap Index Scans are executed by reading the index first, populating the bitmap,
then reading the table in sequential order. This makes them read sequentially as the
data is expected to be laid out of disk approximately, regardless of what the real
underlying row ordering is. Each block is read and then the drive is expected to skip
forward to the next block. Because this gives output sorted using physical order on
disk, the results can easily require sorting afterwards for upper nodes that expect
ordered input.

The index bitmaps built by the scans can be combined with standard bit operations,
including either AND (return rows that are on both lists) or OR (return rows that are
on either list) when appropriate. For non-trivial queries on real world databases, the
bitmap index scan is a versatile workhorse you'll find showing up quite often.

Chapter 10

[249]

Processing nodes
One you have a set of rows, the next type of node you'll encounter when using a
single table are ones that process that set in various ways. These nodes typically
take in a row set and output a different row set, of either the same size or smaller
(perhaps only a single value).

Sort
Sort nodes can appear when you insert ORDER BY statements into your queries:
EXPLAIN ANALYZE SELECT customerid FROM customers ORDER BY zip;

QUERY PLAN

Sort (cost=2104.77..2154.77 rows=20000 width=8) (actual
time=162.796..199.971 rows=20000 loops=1)

 Sort Key: zip

 Sort Method: external sort Disk: 352kB

 -> Seq Scan on customers (cost=0.00..676.00 rows=20000 width=8)
(actual time=0.013..46.748 rows=20000 loops=1)

 Total runtime: 234.527 ms

Sort operations can either execute in memory using the quicksort algorithm, if
they're expected to fit, or will be swapped to disk to use what's called an external
merge sort—the case in this example. The threshold at which that happens depends
on the work_mem setting on the server. The above example may be surprising because
the memory used (352 kB) appears under the default value for that parameter, as
used on this test server:
SHOW work_mem;

 work_mem

 1MB

There's a good explanation for that: the size needed for an in-memory sort is
bigger than the amount of disk needed for an external one. External disk sorts in
PostgreSQL are done by writing a set of sorted files out and then merging the results,
and that takes significantly less memory than the quicksort. Watch what happens
if the work_mem parameter is increased and the statement planned again (which
you can do using SET for a single query; the server configuration doesn't have to be
modified to increase this setting):
SET work_mem='2MB';

EXPLAIN ANALYZE SELECT customerid FROM customers ORDER BY zip;

QUERY PLAN

Query Optimization

[250]

Sort (cost=2104.77..2154.77 rows=20000 width=8) (actual
time=69.696..94.626 rows=20000 loops=1)

 Sort Key: zip

 Sort Method: quicksort Memory: 1372kB

 -> Seq Scan on customers (cost=0.00..676.00 rows=20000 width=8)
(actual time=0.009..33.654 rows=20000 loops=1)

 Total runtime: 121.751 ms

This shows why the default wasn't sufficient—doing the sort in memory actually
requires 1.3 MB, so it was just rejected at the default value as too big. If you turn
on log_temp_files to look for how often disk swap sorts are happening, and
notice sorting files that are below work_mem in size, this might be the reason for
that behavior.

Using ORDER BY is more important to SQL than many newcomers realize, because
there is no row ordering guaranteed when you query unless you request one. You
cannot expect you'll get rows back in the order you inserted them, even though that's
often the case. A common counter-example is when the synchronized scan features
in PostgreSQL 8.3 and later are used. When that kicks in, a second table scan running
against a table one is already executing against will just tag along with the first,
starting to return rows from whatever point the original is at. This will get you rows
returned offset from a completely random point, only circling back to the beginning
once the first scan has finished.

In addition when you're asking for explicit ordering, it's also possible to see a sort
node in situations where another type of node needs its input sorted to operate.
Examples include a unique node, some types of joins and grouping, and some
set operations.

Limit
Like everything else, query limits are built on top of existing scans that return a set
of rows:

EXPLAIN ANALYZE SELECT customerid FROM customers LIMIT 10;

QUERY PLAN

Limit (cost=0.00..0.34 rows=10 width=4) (actual time=0.016..0.063
rows=10 loops=1)

 -> Seq Scan on customers (cost=0.00..676.00 rows=20000 width=4)
(actual time=0.013..0.030 rows=10 loops=1)

 Total runtime: 0.117 ms

Chapter 10

[251]

Note the actual rows output by the Seq Scan here. This shows one of the aspects
of query execution that isn't necessarily obvious. The way queries are carried out,
the top node in the query plan is started, and it asks its children nodes for things
on-demand. It's a top-down execution model; nodes only produce output when
said output is required. In this case, the Seq Scan on the customers table could have
output as many as 20000 rows. But because the limit was reached after only 10 rows,
that's all the Seq Scan node was asked to produce. The action where an upper node
asks for a row from one of its children is referred to as it pulling one from it.

Limit nodes work a little differently than most, because depending on how large the
limit is relative to the total number of rows the startup cost of the node can become
more important than the total cost. If the optimizer knows that only a few rows need
to be produced, it can favor a plan that starts quickly to produce rows over one that
is lower in total cost, but has most of that cost in startup. Putting a small limit on a
query biases plans that quickly produce output rows, and whether or not that works
well is quite vulnerable to whether the estimates the optimizer is working with are
correct or not.

Offsets
When OFFSET is added to a query, that isn't handled by its own node type. It's
handled as a different form of limit. Essentially, the first few rows the underlying
scan produces are thrown away. This is easy to see given a variation on the LIMIT
query seen previously:

EXPLAIN ANALYZE SELECT customerid FROM customers OFFSET 10 LIMIT 10;

QUERY PLAN

Limit (cost=0.34..0.68 rows=10 width=4) (actual time=0.052..0.101
rows=10 loops=1)

 -> Seq Scan on customers (cost=0.00..676.00 rows=20000 width=4)
(actual time=0.012..0.047 rows=20 loops=1)

 Total runtime: 0.157 ms

Note how this time, the Seq Scan node produced 20 rows of output. The first ten
were skipped by the OFFSET, then the next ten satisfied the LIMIT node, at which
point the query was finished.

Query Optimization

[252]

Aggregate
Aggregate functions take in a series of values and produce a single output. Examples
of aggregates are AVG(), COUNT(), EVERY(), MIN(), MAX(), STDDEV(), SUM(), and
VARIANCE(). To compute an aggregate, all of the rows are typically read, then fed
through the aggregate node to compute a result:

EXPLAIN ANALYZE SELECT max(zip) FROM customers;

QUERY PLAN

Aggregate (cost=726.00..726.01 rows=1 width=4) (actual
time=75.168..75.169 rows=1 loops=1)

 -> Seq Scan on customers (cost=0.00..676.00 rows=20000 width=4)
(actual time=0.007..32.769 rows=20000 loops=1)

 Total runtime: 75.259 ms

This isn't always the case though, because some values can be computed with
indexes instead. Looking for the highest customerid in the customers table,
where that's the primary key, doesn't have to look at every row:

EXPLAIN ANALYZE SELECT max(customerid) FROM customers;

QUERY PLAN

Result (cost=0.05..0.06 rows=1 width=0) (actual time=0.047..0.048 rows=1
loops=1)

 InitPlan 1 (returns $0)

 -> Limit (cost=0.00..0.05 rows=1 width=4) (actual
time=0.038..0.039 rows=1 loops=1)

 -> Index Scan Backward using customers_pkey on customers
(cost=0.00..963.25 rows=20000 width=4) (actual time=0.034..0.034 ro

ws=1 loops=1)

 Index Cond: (customerid IS NOT NULL)

 Total runtime: 0.089 ms

HashAggregate
A versatile node type, the HashAggregate node takes in a set of nodes and outputs
a series of derived data in buckets. A major reworking in PostgreSQL 8.4 turned
several common types of operations into ones that are implemented using a
HashAggregate node. They are now commonly used to compute distinct values,
group by results, and unions. The main value is that hashing this way can avoid
needing to sort the values, which is sometimes an expensive step. There are plenty
of examples of the HashAggregate node type next—in fact, in current PostgreSQL
versions, the harder thing to do is not see it used!

Chapter 10

[253]

Sometimes aggregates that are being computed by GROUP BY or even DISTINCT will
use a HashAggregate to compute their output. Consider this example that looks at
which category each product belongs to:

EXPLAIN ANALYZE SELECT category, count(*) FROM products GROUP BY category
ORDER BY category;

QUERY PLAN

Sort (cost=251.52..251.56 rows=16 width=4) (actual time=40.834..40.860
rows=16 loops=1)

 Sort Key: category

 Sort Method: quicksort Memory: 17kB

 -> HashAggregate (cost=251.00..251.20 rows=16 width=4) (actual
time=40.738..40.775 rows=16 loops=1)

 -> Seq Scan on products (cost=0.00..201.00 rows=10000 width=4)
(actual time=0.011..17.313 rows=10000 loops=1)

 Total runtime: 40.987 ms

In this case, there are only 16 categories involved, easily fitting into a set of hash table
buckets. In PostgreSQL 9.0, you can get a bit more detail about exactly what these
various hash types are up to in the EXPLAIN plans than on earlier versions.

Unique
A unique node takes a sorted set of rows as an input and outputs one with all
the duplicates removed. It can appear when using DISTINCT and when UNION is
eliminating duplicates in its output. The output will be sorted the same as the input.

As of PostgreSQL 8.4, DISTINCT will usually be implementing using a HashAggregate
node instead of a Unique one, which on smaller tables can collect the unique values
without having to explicitly sort them first.

EXPLAIN ANALYZE SELECT DISTINCT(state) FROM customers;

QUERY PLAN

 HashAggregate (cost=726.00..726.51 rows=51 width=3) (actual
time=91.950..92.048 rows=52 loops=1)

 -> Seq Scan on customers (cost=0.00..676.00 rows=20000 width=3)
(actual time=0.009..49.466 rows=20000 loops=1)

 Total runtime: 92.319 ms

Query Optimization

[254]

To see the old implementation in current PostgreSQL versions with something the
size of the Dell Store data, it's easiest to just turn that optimization off:

SET enable_hashagg=off;

EXPLAIN ANALYZE SELECT DISTINCT(state) FROM customers;

QUERY PLAN

Unique (cost=2104.77..2204.77 rows=51 width=3) (actual
time=149.003..204.945 rows=52 loops=1)

 -> Sort (cost=2104.77..2154.77 rows=20000 width=3) (actual
time=148.999..178.338 rows=20000 loops=1)

 Sort Key: state

 Sort Method: external sort Disk: 232kB

 -> Seq Scan on customers (cost=0.00..676.00 rows=20000
width=3) (actual time=0.012..42.860 rows=20000 loops=1)

 Total runtime: 205.772 ms

As this earlier implementation of Unique had the side-effect of sorting its output,
this can be an application breaking change when switching from earlier versions of
PostgreSQL to 8.4 or later. This serves as another reminder of why explicit ordering
should be requested in your queries, not assumed just because the output you're
seeing now seems always to be ordered correctly.

WindowAgg
The SQL windowing functions added this type of aggregation to PostgreSQL 8.4.
An example of it is shown as part of the discussion of that new feature at the end
of this chapter.

Result
Sometimes a node just needs to return a result computed by a statement:

EXPLAIN ANALYZE SELECT 1;

QUERY PLAN

Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.003..0.005 rows=1
loops=1)

 Total runtime: 0.038 ms

Chapter 10

[255]

Result nodes are basically quick pass-through nodes when individual values
are being operated on, instead of sets of rows. They can be used to collapse and
therefore optimize sections of a WHERE clause that can be computed once:

EXPLAIN ANALYZE SELECT * FROM customers WHERE customerid=(SELECT
min(customerid) FROM customers)+1;

QUERY PLAN

Index Scan using customers_pkey on customers (cost=0.06..8.33 rows=1
width=268) (actual time=0.085..0.088 rows=1 loops=1)

 Index Cond: (customerid = ($1 + 1))

 InitPlan 2 (returns $1)

 -> Result (cost=0.05..0.06 rows=1 width=0) (actual
time=0.061..0.062 rows=1 loops=1)

 InitPlan 1 (returns $0)

 -> Limit (cost=0.00..0.05 rows=1 width=4) (actual
time=0.052..0.054 rows=1 loops=1)

 -> Index Scan using customers_pkey on customers
(cost=0.00..963.25 rows=20000 width=4) (actual time=0.047..0.047 row

s=1 loops=1)

 Index Cond: (customerid IS NOT NULL)

 Total runtime: 0.189 ms

They can also show up in some spots where they serve as useful intermediaries to
match node types that otherwise don't quite fit together. Note how one appears in
the max(customerid) example in the Aggregate samples seen previously.

Append
Like UNIQUE, Append is another node type that's less popular than it used to be.
In earlier PostgreSQL versions, Append nodes were used to produce some types
of UNION merges. As of PostgreSQL 8.4 most of these are done by the versatile
HashAggregate instead:

EXPLAIN ANALYZE SELECT * FROM customers WHERE state='MA' UNION SELECT *
FROM customers WHERE state='MD';

QUERY PLAN

HashAggregate (cost=1476.06..1480.07 rows=401 width=268) (actual
time=25.847..27.104 rows=401 loops=1)

 -> Append (cost=0.00..1456.01 rows=401 width=268) (actual
time=0.031..22.559 rows=401 loops=1)

Query Optimization

[256]

 -> Seq Scan on customers (cost=0.00..726.00 rows=214
width=268) (actual time=0.027..10.800 rows=214 loops=1)

 Filter: ((state)::text = 'MA'::text)

 -> Seq Scan on customers (cost=0.00..726.00 rows=187
width=268) (actual time=0.063..10.514 rows=187 loops=1)

 Filter: ((state)::text = 'MD'::text)

 Total runtime: 27.956 ms

This plan is dramatically easier to read than the earlier behavior, and can be forced
by turning off the new optimization:

SET enable_hashagg=off;

EXPLAIN ANALYZE SELECT * FROM customers WHERE state='MA' UNION SELECT *
FROM customers WHERE state='MD';

 QUERY PLAN

 Unique (cost=1473.35..1494.40 rows=401 width=268) (actual
time=23.993..26.892 rows=401 loops=1)

 -> Sort (cost=1473.35..1474.35 rows=401 width=268) (actual
time=23.987..24.619 rows=401 loops=1)

 Sort Key: public.customers.customerid, public.customers.
firstname, public.customers.lastname, public.customers.address1, public.

customers.address2, public.customers.city, public.customers.state,
public.customers.zip, public.customers.country, public.customers.
region, public.customers.email, public.customers.phone, public.customers.
creditcardtype, public.customers.creditcard, public.customers.creditc

ardexpiration, public.customers.username, public.customers.password,
public.customers.age, public.customers.income, public.customers.gender

 Sort Method: quicksort Memory: 121kB

 -> Append (cost=0.00..1456.01 rows=401 width=268) (actual
time=0.027..22.796 rows=401 loops=1)

 -> Seq Scan on customers (cost=0.00..726.00 rows=214
width=268) (actual time=0.025..10.935 rows=214 loops=1)

 Filter: ((state)::text = 'MA'::text)

 -> Seq Scan on customers (cost=0.00..726.00 rows=187
width=268) (actual time=0.062..10.620 rows=187 loops=1)

 Filter: ((state)::text = 'MD'::text)

 Total runtime: 27.750 ms

In this case, the external sort is a small one, but in larger types of UNION operations
the improvement from using the newer implementation can be significant.

Chapter 10

[257]

Group
Yet another node type left behind by progress, the Group node was the way earlier
PostgreSQL versions implemented GROUP BY. It required that the input data was
sorted by the grouping column set. As of PostgreSQL 7.4 that's commonly done
by a HashAggregate instead:

EXPLAIN ANALYZE SELECT state,COUNT(*) FROM customers GROUP BY state;

QUERY PLAN

HashAggregate (cost=776.00..776.64 rows=51 width=3) (actual
time=85.793..85.916 rows=52 loops=1)

 -> Seq Scan on customers (cost=0.00..676.00 rows=20000 width=3)
(actual time=0.010..33.447 rows=20000 loops=1)

 Total runtime: 86.103 ms

You can once again see the old behavior by turning off this optimization:

SET enable_hashagg=off;

EXPLAIN ANALYZE SELECT state,count(*) FROM customers GROUP BY state;

QUERY PLAN

GroupAggregate (cost=2104.77..2255.41 rows=51 width=3) (actual
time=223.696..281.414 rows=52 loops=1)

 -> Sort (cost=2104.77..2154.77 rows=20000 width=3) (actual
time=223.043..252.766 rows=20000 loops=1)

 Sort Key: state

 Sort Method: external sort Disk: 232kB

 -> Seq Scan on customers (cost=0.00..676.00 rows=20000
width=3) (actual time=0.010..45.713 rows=20000 loops=1)

 Total runtime: 282.295 ms

Not having to do the external merge sort on disk is the main reason the hash style
of plan is preferred now, which improves the runtime of this style of query. You
can still see the older GroupAggregate execution show up when the input already
happens to be ordered, which happens in the Merge Join example shown later.

Query Optimization

[258]

Subquery Scan and Subplan
These two types of nodes are used for shuffling rows around between nodes in
some types of UNION and subselect queries. They have little performance impact
and have also become rare in current PostgreSQL versions due to the
HashAggregate optimizations.

Subquery conversion and IN lists
A few types of things that you might expect to be executed as subqueries will
actually turn into types of joins instead. This happens when using a subquery
to find a list of rows then used for IN:

EXPLAIN ANALYZE SELECT * FROM orders WHERE customerid IN (SELECT
customerid FROM customers where state='MD');

QUERY PLAN

 Hash Semi Join (cost=728.34..982.61 rows=249 width=36) (actual
time=11.521..55.139 rows=120 loops=1)

 Hash Cond: (orders.customerid = customers.customerid)

 -> Seq Scan on orders (cost=0.00..220.00 rows=12000 width=36)
(actual time=0.009..20.496 rows=12000 loops=1)

 -> Hash (cost=726.00..726.00 rows=187 width=4) (actual
time=11.437..11.437 rows=187 loops=1)

 Buckets: 1024 Batches: 1 Memory Usage: 5kB

 -> Seq Scan on customers (cost=0.00..726.00 rows=187 width=4)
(actual time=0.066..11.003 rows=187 loops=1)

 Filter: ((state)::text = 'MD'::text)

 Total runtime: 55.429 ms

As you can see, this is silently converted into a regular join; the exact type used, a Hash
Semi Join, is covered later. There's no subquery node involved there. Performance of
PostgreSQL IN queries can be quite good because this sort of conversion is always
done. Then all the usual join optimization tricks are available to improve the result.
This one is stuck doing a Seq Scan on each table simply because there are no indexes
useful here. If they were, the rewritten form might execute quite quickly.

Other types of subqueries will be considered for similar rewrites into joins where
doing so is logically equivalent, for example the following slightly odd query:

EXPLAIN ANALYZE SELECT * FROM orders WHERE customerid IN (SELECT
customerid FROM customers WHERE customerid=1000 OR customerid=2000);

It will be rewritten into a Nested Loop join with inner Index Scan in any recent
PostgreSQL version.

Chapter 10

[259]

Set operations
The easiest way to show how a set operation works is to look at a query that
uses one:

SELECT * FROM customers WHERE state='MD'

INTERSECT

SELECT * FROM customers WHERE zip='21340';

This is obviously a trivial example—you could just put both WHERE clauses into a
single line and get the same result more easily. But there are more complicated types
of queries you can build using INTERSECT, INTERSECT ALL, EXCEPT, and EXCEPT ALL
that are the easiest way to write what you're looking for. EXCEPT is shown later for
helping determine if two queries give the same output for example.

SetOp changed to HashSetOp in PostgreSQL 8.4. Here are the new and old types of
plans you can get when executing an INTERSECT or EXCEPT:

EXPLAIN ANALYZE SELECT * FROM customers WHERE state='MD' INTERSECT SELECT
* FROM customers WHERE zip='21340';

QUERY PLAN

 HashSetOp Intersect (cost=0.00..1463.28 rows=1 width=268) (actual
time=28.379..28.381 rows=1 loops=1)

 -> Append (cost=0.00..1453.88 rows=188 width=268) (actual
time=0.160..27.547 rows=188 loops=1)

 -> Subquery Scan on "*SELECT* 2" (cost=0.00..726.01 rows=1
width=268) (actual time=0.156..13.618 rows=1 loops=1)

 -> Seq Scan on customers (cost=0.00..726.00 rows=1
width=268) (actual time=0.150..13.608 rows=1 loops=1)

 Filter: (zip = 21340)

 -> Subquery Scan on "*SELECT* 1" (cost=0.00..727.87 rows=187
width=268) (actual time=0.070..13.213 rows=187 loops=1)

 -> Seq Scan on customers (cost=0.00..726.00 rows=187
width=268) (actual time=0.063..12.098 rows=187 loops=1)

 Filter: ((state)::text = 'MD'::text)

 Total runtime: 28.672 ms

SET enable_hashagg=off;

EXPLAIN ANALYZE SELECT * FROM customers WHERE state='MD' INTERSECT SELECT
* FROM customers WHERE zip='21340';

QUERY PLAN

Query Optimization

[260]

 SetOp Intersect (cost=1460.98..1470.85 rows=1 width=268) (actual
time=26.539..27.613 rows=1 loops=1)

 -> Sort (cost=1460.98..1461.45 rows=188 width=268) (actual
time=26.499..26.785 rows=188 loops=1)

 Sort Key: "*SELECT* 2".customerid, "*SELECT* 2".firstname,
"*SELECT* 2".lastname, "*SELECT* 2".address1, "*SELECT* 2".address2,

"*SELECT* 2".city, "*SELECT* 2".state, "*SELECT* 2".zip, "*SELECT*
2".country, "*SELECT* 2".region, "*SELECT* 2".email, "*SELECT* 2".phon

e, "*SELECT* 2".creditcardtype, "*SELECT* 2".creditcard, "*SELECT*
2".creditcardexpiration, "*SELECT* 2".username, "*SELECT* 2".password,

 "*SELECT* 2".age, "*SELECT* 2".income, "*SELECT* 2".gender

 Sort Method: quicksort Memory: 66kB

 -> Append (cost=0.00..1453.88 rows=188 width=268) (actual
time=0.146..25.366 rows=188 loops=1)

 -> Subquery Scan on "*SELECT* 2" (cost=0.00..726.01
rows=1 width=268) (actual time=0.143..13.409 rows=1 loops=1)

 -> Seq Scan on customers (cost=0.00..726.00 rows=1
width=268) (actual time=0.137..13.399 rows=1 loops=1)

 Filter: (zip = 21340)

 -> Subquery Scan on "*SELECT* 1" (cost=0.00..727.87
rows=187 width=268) (actual time=0.070..11.384 rows=187 loops=1)

 -> Seq Scan on customers (cost=0.00..726.00
rows=187 width=268) (actual time=0.062..10.544 rows=187 loops=1)

 Filter: ((state)::text = 'MD'::text)

 Total runtime: 27.918 ms

All of the standard, older SetOp implementations require sorted input to identify
identical rows to eliminate or include in the output. On this example, the HashSetOp
is just barely more efficient than the original SetOp implementation, but that's just
because so few rows are being returned here.

Materialize
Normally nodes return their output row when their parent node asks for them.
Sometimes when executing a subselect or inside part of a join, the planner might
consider it more efficient to materialize that node instead. This produces the entire
row set at once instead of having each upper limit row grab them. This is rare
enough that it's hard to even show a good example of it.

A much more common use of Materialize involves Merge Joins and in some cases
Nested Loops, and those are specifically covered in a later section.

Chapter 10

[261]

CTE Scan
Another new PostgreSQL 8.4 feature, Common Table Expressions (CTE) add new
efficient ways to execute queries that even let you put recursion into SQL. One
way they can be used is as a sort of in-line view, which makes for an easy way
to demonstrate the feature and the resulting type of plan node:

EXPLAIN ANALYZE WITH monthlysales AS

 (SELECT EXTRACT(year FROM orderdate) AS year,

 EXTRACT(month FROM orderdate) AS month,

 sum(netamount) AS sales

 FROM orders GROUP BY year,month)

SELECT year,SUM(sales) AS sales FROM monthlysales GROUP BY year;

QUERY PLAN

 HashAggregate (cost=447.34..449.84 rows=200 width=40) (actual
time=122.002..122.004 rows=1 loops=1)

 CTE monthlysales

 -> HashAggregate (cost=430.00..438.21 rows=365 width=12) (actual
time=121.872..121.893 rows=12 loops=1)

 -> Seq Scan on orders (cost=0.00..340.00 rows=12000
width=12) (actual time=0.026..56.812 rows=12000 loops=1)

 -> CTE Scan on monthlysales (cost=0.00..7.30 rows=365 width=40)
(actual time=121.880..121.942 rows=12 loops=1)

 Total runtime: 122.133 ms

This starts with sales data summarized by month and year, then uses a CTE to
summarize only by year. It's a useless example (you might as well have grouped
that way in the first place), but it shows how the query executor uses the CTE node
type. Note that, as these queries use EXTRACT, which isn't something PostgreSQL has
statistics on, the estimated number of rows for the CTE Scan is really off from the
reality—365 expected, 12 actually produced. This example is also expanded on in
the SQL window section later.

Query Optimization

[262]

Joins
If all the query planner had to do was decide between index scan types and how to
combine them using its wide array of derived nodes, its life would be pretty easy. All
the serious complexity in the planner and optimizer relates to joining tables together.
Each time another table is added to a list that need to be joined, the number of possible
ways goes up dramatically. If there's, say three tables to join, you can expect the query
plan to consider every possible plan and select the optimal one. But if there are twenty
tables to join, there's no possible way it can exhaustively search each join possibility. As
there are a variety of techniques available to join each table pair, that further expands
the possibilities. The universe of possible plans has to be pruned somehow.

Fundamentally, each way two tables can be joined together gives the same output.
The only difference between them is how efficient the result is to execute. All joins
consider an outer and inner table. These alternately might be called the left and right
if considering a query plan as a tree or graph, and that usage shows up in some of
the PostgreSQL internals documentation.

Nested loop
If you need every possible row combination joined together, the nested loop is what
you want. In most other cases, probably not. The classic pseudocode description
of a nested loop join looks like the following:

for each outer row:

 for each inner row:

 if join condition is true:

 output combined row

Both the inner and outer loops here could be executing against any of the scan types:
sequential, indexed, bitmap, or even the output from another join. As you can see
from the code, the amount of time this takes to run is proportional to the number of
rows in the outer table multiplied by the rows in the inner. It is considering every
possible way to join every row in each table with every other row.

It's rare to see a real nested loop without an inner Index Scan, the type covered in the
next section. Joining data using merges and hashes are normal for the real world that
tends to be indexed or have a clear relationship between tables. You can see one if
you just forget to put a WHERE condition on a join though, which then evaluates the
cross product and outputs a ton of rows. The following is the one that produces by
far the longest runtime of a query in this chapter:

EXPLAIN ANALYZE SELECT * FROM products,customers;

QUERY PLAN

Chapter 10

[263]

 Nested Loop (cost=0.00..2500902.00 rows=200000000 width=319) (actual
time=0.033..893865.340 rows=200000000 loops=1)

 -> Seq Scan on customers (cost=0.00..676.00 rows=20000 width=268)
(actual time=0.010..57.689 rows=20000 loops=1)

 -> Materialize (cost=0.00..251.00 rows=10000 width=51) (actual
time=0.006..15.319 rows=10000 loops=20000)

 -> Seq Scan on products (cost=0.00..201.00 rows=10000
width=51) (actual time=0.004..16.126 rows=10000 loops=1)

 Total runtime: 1146091.431 ms

That's a 19 minute runtime, which sounds like a lot until you realize it's producing
200 million output rows. That works out to 175 K row/second being processed, not
really that shabby.

Note that a nested loop is the only way to execute a CROSS JOIN, and it can
potentially be the only way to compute complicated conditions that don't map
into either a useful merge or Hash Join instead.

Nested loop with inner Index Scan
The standard situation you'll see a nested loop in is one where the inner table is only
returning back a limited number of rows. If an index exists on one of the two tables
involved, the optimizer is going to use it to limit the number of rows substantially,
and the result may then make the inner * outer rows runtime of the nested loop
acceptable. Consider the case where you're looking for a single order using a field
with no index (so every order must be scanned), but then joining with its matching
order lines:

EXPLAIN ANALYZE SELECT * FROM orders,orderlines WHERE orders.
totalamount=329.78 AND orders.orderid=orderlines.orderid;

QUERY PLAN

Nested Loop (cost=0.00..265.41 rows=5 width=54) (actual
time=0.108..12.886 rows=9 loops=1)

 -> Seq Scan on orders (cost=0.00..250.00 rows=1 width=36) (actual
time=0.073..12.787 rows=1 loops=1)

 Filter: (totalamount = 329.78)

 -> Index Scan using ix_orderlines_orderid on orderlines
(cost=0.00..15.34 rows=5 width=18) (actual time=0.024..0.050 row

s=9 loops=1)

 Index Cond: (orderlines.orderid = orders.orderid)

 Total runtime: 12.999 ms

Query Optimization

[264]

The main way this type of scan can go wrong is if the optimizer's sensitivity guess
for the inner relation here is quite wrong. This inner index scan was expecting five
rows, but nine actually came out; a reasonable error that wouldn't have changed
the plan type. It's possible for that guess to be extremely wrong instead. Being off a
factor of 1000 or more is quite possible due to bad table statistics or limitations in
the optimizer's cost model. Then the resulting join will be very inefficient, and
could have potentially been executed better another way.

Another way this plan might be avoided even though it's an otherwise good
candidate is because effective_cache_size is too small to cope with the inner
index scan. See the section on that parameter later for more information.

A nested loop can also show up when both the inner and outer scan use an index:

EXPLAIN ANALYZE SELECT * FROM orders,orderlines WHERE orderlines.
orderid=1000 AND orders.orderid=orderlines.orderid;

QUERY PLAN

Nested Loop (cost=0.00..23.66 rows=5 width=54) (actual time=0.052..0.093
rows=6 loops=1)

 -> Index Scan using orders_pkey on orders (cost=0.00..8.27 rows=1
width=36) (actual time=0.029..0.031 rows=1 loops=1)

 Index Cond: (orderid = 1000)

 -> Index Scan using ix_orderlines_orderid on orderlines
(cost=0.00..15.34 rows=5 width=18) (actual time=0.013..0.028 row

s=6 loops=1)

 Index Cond: (orderlines.orderid = 1000)

 Total runtime: 0.190 ms

This form should execute even faster, as in this case. But it is even more dangerous,
because a sensitivity mistake on either the inner or outer relation can cause this node
to do much more work than expected.

Merge Join
A Merge Join requires that both its input sets are sorted. It then scans through the two
in that sorted order, generally moving forward row at a time through both tables as
the joined column values change. The inner table can be rescanned more than once
if the outer one has duplicate values. That's where the normally forwards scan on it
goes backwards, to consider the additional matching set of rows from the duplication.

Chapter 10

[265]

You can only see a Merge Join when joining on an equality condition, not an
inequality or a range. To see one, let's ask for a popular report: how much net
business was done by each customer?

EXPLAIN ANALYZE SELECT C.customerid,sum(netamount) FROM customers C,
orders O WHERE C.customerid=O.customerid GROUP BY C.customerid;

QUERY PLAN

GroupAggregate (cost=0.05..2069.49 rows=12000 width=12) (actual
time=0.099..193.668 rows=8996 loops=1)

 -> Merge Join (cost=0.05..1859.49 rows=12000 width=12) (actual
time=0.071..146.272 rows=12000 loops=1)

 Merge Cond: (c.customerid = o.customerid)

 -> Index Scan using customers_pkey on customers c
(cost=0.00..963.25 rows=20000 width=4) (actual time=0.031..37.242
rows=20000 loo

ps=1)

 -> Index Scan using ix_order_custid on orders o
(cost=0.00..696.24 rows=12000 width=12) (actual time=0.025..30.722
rows=12000 loop

s=1)

 Total runtime: 206.353 ms

That's executed how you'd probably expect it to be: follow the customerid indexes
on the customers and orders table to match the two tables up, which gives the
output in sorted order. The query executor can then use an efficient Merge Join to
combine them, and aggregate the now joined together result. As the result is still
sorted, it's therefore also easy to group using the aggregate Group implementation,
instead of using the HashAggregate grouping method.

Nested loop and Merge Join materialization
Sometimes there can be a substantial amount of the rescanning of inner rows
required for a Merge Join. And full inner rescans are the expected case when
executing a Nested loop. In this case, as mentioned previously a Materialize node can
be inserted specifically to cache the output from the inner scan, in hopes that will be
faster—at the expense of using additional memory. This can be particularly valuable
on the common inner Index Scan case, where going backwards could potentially
even turn into random I/O under particularly unfortunate caching circumstances.
Also, not all operators can be rescanned, making materialization necessary in all
cases when they're used.

Query Optimization

[266]

PostgreSQL 9.0 introduced a model where rescans have a different cost model
than when the rows are initially scanned, to try and accurately estimate when this
materialization is a saving. As such, the situations in which you will and won't see
Materialize nodes show up in that version are much different from earlier versions.

Hash Joins
The primary alternative to a Merge Join, a Hash Join doesn't sort its input. Instead,
it creates a hash table from each row of the inner table, scanning for matching ones
in the outer. The output will not necessarily be in any useful order.

A query to find all the products that have at one point been ordered by any customer
shows a regular Hash Join:

EXPLAIN ANALYZE SELECT prod_id,title FROM products p WHERE EXISTS (SELECT
1 FROM orderlines ol WHERE ol.prod_id=p.prod_id);

QUERY PLAN

 Hash Join (cost=1328.16..2270.16 rows=9724 width=19) (actual
time=249.783..293.588 rows=9973 loops=1)

 Hash Cond: (p.prod_id = ol.prod_id)

 -> Seq Scan on products p (cost=0.00..201.00 rows=10000 width=19)
(actual time=0.007..12.781 rows=10000 loops=1)

 -> Hash (cost=1206.62..1206.62 rows=9724 width=4) (actual
time=249.739..249.739 rows=9973 loops=1)

 Buckets: 1024 Batches: 1 Memory Usage: 234kB

 -> HashAggregate (cost=1109.38..1206.62 rows=9724 width=4)
(actual time=219.695..234.154 rows=9973 loops=1)

 -> Seq Scan on orderlines ol (cost=0.00..958.50
rows=60350 width=4) (actual time=0.005..91.874 rows=60350 lo

ops=1)

 Total runtime: 306.523 ms

Whether a Hash Join is better or worse than the other possibilities depends on
things like whether input is already sorted (in which case a Merge Join might be
inexpensive) and how much memory is required to execute it. The hash tables built
for the inner scan here require enough memory to store all the rows, which can
be large.

Chapter 10

[267]

To keep that under control, larger Hash Join executions will split the output into
multiple batches. In this example only one was required, to hold 10 K rows. This
type of join is particularly popular when the inner relation is small and building
the hash is therefore inexpensive.

Hash semi and anti joins
One of the hash improvements in PostgreSQL 8.4 is introducing hash semi and anti
joins. A semi join is used when the optimizer needs to confirm that a key value exists
on one side of the join, but doesn't particularly care what that value is beyond that.
The opposite, an anti join, looks specifically for entries where the key value doesn't
exist. The most common way to see these two types of join is when executing EXISTS
and NOT EXISTS. The inverse of the query in the previous section is finding all the
products that have never been ordered by any customer; it executes most efficiently
with an anti join:

EXPLAIN ANALYZE SELECT prod_id,title FROM products p WHERE NOT EXISTS
(SELECT 1 FROM orderlines ol WHERE ol.prod_id=p.prod_id);

QUERY PLAN

Hash Anti Join (cost=1919.88..2536.70 rows=276 width=19) (actual
time=204.570..246.624 rows=27 loops=1)

 Hash Cond: (p.prod_id = ol.prod_id)

 -> Seq Scan on products p (cost=0.00..201.00 rows=10000 width=19)
(actual time=0.008..15.032 rows=10000 loops=1)

 -> Hash (cost=958.50..958.50 rows=60350 width=4) (actual
time=203.107..203.107 rows=60350 loops=1)

 Buckets: 8192 Batches: 2 Memory Usage: 715kB

 -> Seq Scan on orderlines ol (cost=0.00..958.50 rows=60350
width=4) (actual time=0.006..98.247 rows=60350 loops=1)

 Total runtime: 247.355 ms

The main reason to restructure the plan this way is just for efficiency. It can require
considerably less index reading to work this way than the earlier approach for
executing queries like this, which would do a pair of index scans and combine
them with a filter.

This example uses more memory for hashing than the similar query in the last
section. Two batches are used to hold 60 K rows. The way batches are processed
internally requires keeping some in memory while others are flushed to disk,
and the optimizer eventually works through them all.

Query Optimization

[268]

There is actually an interesting optimization in that section of code, one that happens
with all Hash Joins (not just the semi and anti variations). If the outer relation in
the join isn't uniform, if it has some Most Common Values (MCV) that represent a
significant portion of the table, the execution will prefer to keep batches containing
those in memory to process first. If you suspect a skewed distribution of values in
your data set, with many MCV and this type of join, you may want to check statistics
targets and possibly increase them until the optimizer recognizes this fact. This can
improve the odds that you'll hit the optimized path available.

As for examples of standard semi joins, there are two elsewhere in this chapter.
Subquery conversion and IN lists seen previously has a simple one, while the
one appearing in Avoiding plan restructuring with OFFSET later gives a more
complicated one to review.

Join ordering
As the overall query costs go up exponentially and the number of joins increases,
controlling that complexity is a major component to both query tuning and to
ongoing improvement in the PostgreSQL optimizer. The differences between a
sequential scan or using an index on a table will be magnified as those results
are then joined to additional tables.

Forcing join order
Consider this three-way join that takes the cust_hist table and joins it to its
matching products and customer keys:

SELECT * FROM cust_hist h INNER JOIN products p ON (h.prod_id=p.prod_id)
INNER JOIN customers c ON (h.customerid=c.customerid);

This join is identical to an implementation that uses an implicit join and a
WHERE clause:

SELECT * FROM cust_hist h,products p,customers c WHERE h.prod_id=p.prod_
id AND h.customerid=c.customerid;

In either case, the query optimizer is free to choose plans that execute these joins in
several orders. It could join cust_hist to products, then to customers, or it could
join to customers then to products. The results will be identical, and the cheapest
one will be used.

However, this doesn't have to be the case. Doing these searches for optimal plans
is time consuming, and it has the potential to make a bad decision. If you are sure
of the right way to join the tables efficiently and want to reduce planning time, you
can force the optimizer to use the order you specified when doing a series of explicit

Chapter 10

[269]

JOIN operations. Reduce the parameter join_collapse_limit from its default of
eight to do so; typically the useful value here is to prevent all join reordering by
lowering it to one. So the following example is going to start with cust_hist, join
to products, then to customers in every case:

SET join_collapse_limit = 1;

SELECT * FROM cust_hist h INNER JOIN products p ON (h.prod_id=p.prod_id)
INNER JOIN customers c ON (h.customerid=c.customerid);

Alternate plans won't be considered. This can be useful in two main contexts. If
query planning time is large for a particular complicated join, discovering the usual
order that will be executing and making it explicit in the query can save significant
planning time. And in cases where the optimizer selected order was poor, this is
one form of hint you can provide to it on what right things to do.

There is a similar parameter named from_collapse_limit that controls how much
freedom the query optimizer has to merge subqueries into upper ones. Generally
both these values are set to the same value, so behavior is easier to predict. There
may be cases for setting them to different values if you are being quite careful
about tweaking for planning time versus query execution time.

Join removal
A new feature for PostgreSQL 9.0 will remove joins in circumstances where
they aren't really required. The following join would be common to many queries
running against this data that wanted to match up a product with its matching
inventory data:

SELECT * FROM products LEFT JOIN inventory ON products.prod_id=inventory.
prod_id;

You might even put this into a view as a shorthand for the combined result, then
filter it down from there, so that not everyone has to remember how to do the join.
But some queries using that general form might not even need to use the inventory
data, such as this one that only references products fields:

EXPLAIN ANALYZE SELECT products.title FROM products LEFT JOIN inventory
ON products.prod_id=inventory.prod_id;

QUERY PLAN

 Seq Scan on products (cost=0.00..201.00 rows=10000 width=19) (actual
time=0.014..18.910 rows=10000 loops=1)

 Total runtime: 34.266 ms

Query Optimization

[270]

Note that there's no join at all here, it has been optimized away. There are three
sensible requirements before this logic can kick in:

A LEFT JOIN is happening.
A unique index exists for the join columns.
None of the information in the candidate table to remove is used anywhere.

Because of the current restrictions on this optimization, if it's possible for you to use
LEFT JOIN instead of INNER JOIN when you write a query, that would be preferable
if you also suspect removable joins may crop into your execution plans. Removing
INNER ones may eventually be supported in PostgreSQL, but it doesn't know how
to do that yet.

While this particular mistake is obvious here, in complicated database setups where
the physical table structure is abstracted away by views and programmatically
generated queries, having the optimizer throw out the redundant joins can be a
useful improvement.

Genetic query optimizer
Once the number of joins gets large enough, there is really no hope the query
optimizer can evaluate all of them exhaustively and still return plans in a reasonable
period of time. When this happens, the genetic query optimizer (GEQO) is called
in to work on the problem instead. It numbers each of the tables to be joined as an
integer starting with 1, so a possible plan for a five table join would be encoded as
1-2-3-4-5. GEQO starts by creating some number of such plans essentially at
random. It then evaluates each of these for fitness, specifically how large the
execution cost is for each of them. The best plans are kept, the worst ones dropped,
some changes to the plans are made ("mutation"), and the process repeats for some
number of generations.

Be warned that because there's so much randomization involved in this process, you
can't expect the plans that come out of GEQO to be the same every time, even given
the same input query and statistics. Starting in PostgreSQL 9.0, it's possible to control
that for more consistent plans, by fixing the random seed used to generate them, to
always be the same value. See the PostgreSQL documentation for more information.

Whether GEQO comes into play or not depends on geqo_threshold, which defaults
to 12. As there aren't even that many tables in the sample database used for this
chapter, it's certainly not something that can be easily demonstrated. If you have that
many tables to join, expect to spend some time learning how GEQO works and about
its tunable parameters. There's little information available on doing so available
beyond what's included in the PostgreSQL documentation.

•

•

•

Chapter 10

[271]

Statistics
The least appreciated part of query optimization is the collection of database
statistics. Often when questions like "why isn't the optimizer using my index?"
are asked, it is poor statistics that are really to blame.

Statistics are collected for each column in every table in a database when ANALYZE
is executed against the table. If you're running with autovacuum turned on, it will
usually run often enough to keep accurate statistics available. Unlike a complete
vacuum cleanup, which can take quite some time on large tables, analyzing a table
should take only a few seconds at any table size. It doesn't take anything other than
a read lock while running either.

Viewing and estimating with statistics
The statistics information collected for each table is easiest to see using the
pg_stats view. The amount of information it returns is a bit overwhelming though,
and not well suited to the standard display format. The following script is named
table-stats.sh in the book's file set, and it tries to display the statistics information
for a particular table (with an optional database too) in a way that makes the
information as readable as possible:

#!/bin/bash

if [-z "$1"]; then

 echo "Usage: table-stats.sh table [db]"

 exit 1

fi

TABLENAME="$1"

if [-n "$2"] ; then

 DB="-d $2"

fi

PSQL="psql $DB -x -c "

$PSQL "

SELECT

 tablename,attname,null_frac,avg_width,n_distinct,correlation,

 most_common_vals,most_common_freqs,histogram_bounds

FROM pg_stats

WHERE tablename='$TABLENAME';

" | grep -v "\-\[RECORD "

Query Optimization

[272]

A typical usage would be:

./table-stats.sh customers dellstore2

Note that the script as currently written doesn't show the inherited information
necessary to sort out statistics on tables using inheritance, such as ones that are
partitioned. An alternate way to display some of the data displayed horizontally
in the preceding query is to use array_to_string to break it into rows, like
the following:

SELECT attname,inherited,array_to_string(most_common_vals, E'\n') AS
most_common_vals FROM pg_stats;

Here are some examples of the information about the customers table returned
by table-stats.sh with some of the less interesting pieces (table name and
null_frac) removed:

attname | customerid

avg_width | 4

n_distinct | -1

correlation | 1

most_common_vals |

most_common_freqs |

histogram_bounds | {1,200,400,600,800,1000,… 19600,19800,20000}

As this is the primary key on the table, the number of distinct values doesn't have
to be estimated by probing the data, thus the -1 for that value. It can be computed
based on the running estimate for total row count kept updated as part of the table
statistics, instead of relying just on what the last ANALYZE noticed.

The histogram bounds data divides the range of data sampled into buckets of equal
frequency. In order to compute how selective a range query will be, the optimizer
figures out where the value selected fits into the histogram. Let's say you were
running a query that grabbed the first 300 rows of data here. This would cover all
of the first bucket's range (1-200) and half the second bucket's range (200-400). The
formula used looks like the following:

selectivity = (1 + (value - bucket[2].min)/

 (bucket[2].max - bucket[2].min)) / num_buckets

selectivity = (1 + (300 - 200)/(400 - 200))/(20000 / 200)

selectivity = 0.015

rows = total row count * selectivity

rows = 20000 * 0.02 = 300

Chapter 10

[273]

And that's how the optimizer would correctly guess that this query will return
300 rows:

EXPLAIN ANALYZE SELECT * FROM customers WHERE customerid<=300;

QUERY PLAN

 Index Scan using customers_pkey on customers (cost=0.00..20.50 rows=300
width=268) (actual time=0.041..0.670 rows=300 loops

=1)

 Index Cond: (customerid <= 300)

 Total runtime: 1.192 ms

The above computation is probably indecipherable to you on a quick first read.
Study this for a bit and try to understand how it works. A basic working knowledge
of how histogram buckets help the query optimizer make decisions will put you
way ahead of many people who try to optimize queries without understanding
how statistics drive the process.

This simulation does depend on collecting enough buckets of information to make
sure the histogram tracked the true distribution of the data. If only a small amount
of data was sampled, you could end up with a very misleading perspective on how
the data was distributed.

PostgreSQL 9.0 even tries to improve on this estimate to noting the end of indexed
values when available, which helps improve estimates when you normally insert
data at the start or end of the column's range (a very common situation). If your
query needs data from either the first or last bucket, and the corresponding left or
right edge can be determined by a quick index lookup, the optimizer will do that
to correctly set its edge boundary. The histogram data ANALYZE puts into a statistics
bucket may grow out of date, while looking up the edge with an index is guaranteed
to give the real minimum or maximum.

For text data, instead of a histogram you get common values and frequencies:

attname | country

avg_width | 5

n_distinct | 11

correlation | -0.613603

most_common_vals | {US,Chile,Australia,Russia,Canada,Germany,China,UK,Ja
pan,France,"South Africa"}

most_common_freqs | {0.5,0.05235,0.0517,0.0506,0.0502,0.0502,0.0501,0.050
1,0.04945,0.04855,0.04675}

histogram_bounds |

Query Optimization

[274]

The most common value and frequency data is paired up taking a matching entry
from each. So that translates into the following:

Country % of data
US 50%
Chile 5.235%
Australia 5.17%
Russia 5.06%

And so on, for all 11 of the other countries listed. If there were more distinct
countries than the number of saved statistics buckets, only the most popular
ones would be saved this way, and the remainder estimated more roughly.

The income column is an integer. There's little enough data in there, that it should
also include a complete distribution instead of a histogram in its statistics:

attname | income

avg_width | 4

n_distinct | 5

correlation | 0.198876

most_common_vals | {20000,80000,40000,60000,100000}

most_common_freqs | {0.2033,0.2032,0.2027,0.1961,0.1947}

histogram_bounds |

This data gets combined together as additional conditions are added to a WHERE
clause, presuming that the individual columns are independent of one another.
For example, if you were filtering on country and income the selectivity would be
combined like the following:

country = 'US': 50% selectivity

income=80000': 20.32% selective

country = 'US' AND income=80000': 50% * 20.32% = 10.16%

rows = total row count * selectivity

rows = 20000 * 10.16% = 2032

And sure enough 2032 is the estimated row count the query planner computes for
that query:

EXPLAIN ANALYZE SELECT * FROM customers WHERE country='US' AND
income=80000;

QUERY PLAN

Chapter 10

[275]

Seq Scan on customers (cost=0.00..776.00 rows=2032 width=268) (actual
time=0.043..32.947 rows=2039 loops=1)

 Filter: (((country)::text = 'US'::text) AND (income = 80000))

 Total runtime: 36.279 ms

If the planner has no idea how selective something is because it's missing data on it,
the guess is it selects 0.5% of the rows.

Statistics targets
It should be obvious from the previous section that the number of buckets used to
hold common values or histogram samples significantly influences how accurate
query row estimates will be. The number of them ANALYZE aims to collect is called
its target. The postgresql.conf parameter default_statistics_target sets
the standard target for tables in each database. The default target was 10 up to
PostgreSQL 8.3, increasing to 100 in 8.4. This means that 8.4 version has significantly
more statistics to work with by default, which normally results in better queries. The
cost for that is slightly worse, query planning time as well as significantly longer
ANALYZE processing (that second part not being something most people care very
much about).

If you only have simple queries to plan and query planning time is large in a
later PostgreSQL version where the target starts at 100, it's possible to reduce
default_statistics_target back to the older starting value of 10 and re-analyze
the whole database. This can give about a few percent performance boost to running
trivial queries in newer versions.

Adjusting a column target
The maximum number of target buckets is either 1000 or 10000 depending on the
version, you can confirm which you have using the following:

SELECT name,max_val FROM pg_settings WHERE name='default_statistics_
target';

Setting an extremely large value here does incur overhead on every query that
is planned, and as mentioned before just the increase from 10 to 100 measurably
detuned the trivial query runtime in PostgreSQL 8.4. There are however some table
columns where it takes substantially larger settings in order to get sufficient statistics
about the data to make accurate estimates. It's not unheard of, in a large data
warehouse setting to increase the target to 1000 or more in order to sample enough
of a giant table to represent it. But you don't want to pay that penalty for every
query, just the ones that need it.

Query Optimization

[276]

Luckily, the target is set per column, so you can override the value just on that
basis for those that need it instead for every table and query run. The per-column
value starts at -1, which means using the system default. You can adjust it like
the following:

ALTER TABLE t ALTER COLUMN k SET STATISTICS 1000;

And then run a new ANALYZE against that table.

Distinct values
Starting in PostgreSQL 9.0, it's possible to override the estimates ANALYZE makes for
the number of distinct values in a table with your own values, in situations where it's
not making a good estimate on its own:

ALTER TABLE t ALTER COLUMN k SET (n_distinct = 500);

In addition to just putting a value in there, you can also set this to a negative value,
at which point it's used as a multiplier on the number of rows in the table. That lets
you set a distinct estimate that scales along with your data based on current and
future expectations about it. There is also a n_distinct_inherited parameter
that can be set on a parent that multiple tables inherit from.

Difficult areas to estimate
If no data has ever been collected about a table using ANALYZE, the planner has
to make up completely arbitrary estimates. This is the worst sort of statistics issue
to have.

Another area where statistics can fail is situations where the query optimizer just
doesn't know how to estimate something. You can watch it utterly fail to estimate
this simple query correctly:

EXPLAIN ANALYZE SELECT * FROM customers WHERE customerid=customerid;

QUERY PLAN

 Seq Scan on customers (cost=0.00..726.00 rows=100 width=268) (actual
time=0.012..30.012 rows=20000 loops=1)

 Filter: (customerid = customerid)

 Total runtime: 55.549 ms

It's obvious to a person that all 20,000 rows will be returned. What's happening is
that because it has no idea how selective the test here is, the optimizer has to make a
wild guess. The standard estimate it uses in this situation is 0.5% of the rows, which
is where the figure of 100 expected rows comes from.

Chapter 10

[277]

When row counts are underestimated, this can result in an Index Scan instead of
the correct Seq Scan, or in running a long nested loop instead of a hash or merge join.
When row counts are overestimated, you can get a Seq Scan instead of an Index Scan,
and a merge or hash Join instead of a nested loop.

Other query planning parameters
Now that all of the ways a query executes have been covered, some of the more
obscure query planning parameters can be explained usefully.

effective_cache_size
Defaulting to 128 MB, effective_cache_size is used to represent approximately
how much total disk space is available for caching the database. This is normally
set to the total of shared_buffers plus the size of the operating system disk buffer
cache after the database is started. This turns out to be greater than half of the total
system memory on a typical dedicated database server. This setting does not allocate
any memory itself, it simply serves as an advisory value for the planner about what
should likely be available.

The only thing this is used for is a estimating whether an Index Scan will fit into the
memory, with the alternative being a Sequential Scan. One area that is particularly
impacted by this setting are nested loop joins that are using an inner Index Scan.
As you reduce effective_cache_size, it's less likely that will be considered an
effective query execution plan.

While the scope where this parameter comes into play is pretty limited, these use
cases do pop up regularly. The penalty for deciding an index can't be processed in
memory is getting a sequential scan or a poor join type choice, which can make for
a rather expensive mistake. And the default value is this parameter is quite small
relative to the amount of RAM in modern servers.

The main thing to be careful about here is that, like work_mem, PostgreSQL isn't
tracking client-related memory resources in any way that limits them across the
whole database. If you have two clients executing queries that require scanning
an extremely large index to work well at the same time, because each thinks it can
use half or more of the RAM in the server for that purpose, you may discover your
operating system cache fighting to retain any data but those indexes. This may be
fine if it makes the large queries execute much faster because they're using a selective
index, but there is a risk here if you set this value too high. Instead of strictly looking
at total system RAM to set this parameter, you might instead do a sanity check by
seeing just how large the indexes you might expect to participate in nested loop with
inner Index Scan queries might be. Then set effective_cache_size to something
large enough to fix them comfortably.

Query Optimization

[278]

As effective_cache_size is a client-side parameter, another alternative approach
here that isn't used very often yet is to treat its sizing more like how work mem is
typically managed. You can set a moderate, but not too high value, in the main
postgresql.conf. Then, only in queries that really need a high setting to execute,
do you increase it. This approach will reduce odds of the potential problem where
multiple really large index scans expected to fit in cache actually turn out to exhaust
cache when running simultaneously. But it will still allow an increase for queries
where you know that's the only good way to approach things.

work_mem
If you are sorting data, work_mem determines when those sorts are allowed to execute
in memory and when they have to swap to disk instead. Starting in PostgreSQL 8.3,
you can turn on log_temp_files and see all the cases where work_mem was not
large enough, and the external merge Disk sort is used instead. Note that you
may be confused to see such usage appear in the logs even though the value shown
is smaller than work_mem. An example and the reason behind why that happens is
explained in the Sort section seen earlier.

Setting a value for this parameter is tricky. Ideally you'd like it to be large on a
system with plenty of memory, so that sorts happen quickly. But every client can use
this much memory for each sort node in a query it's busy executing. Standard sizing
will therefore put an upper bound at around:

work_mem = Total RAM / max_connections / 4

On the assumption that half of system memory could be used for other purposes,
and that it's unlikely every client will be doing more than two sorts at a time. This
is actually a quite aggressive setting; a safer setting would be as follows:

work_mem = Total RAM / max_connections / 16

A good tuning strategy here is to pick a number in between those two values then
monitor total RAM used by PostgreSQL processes, free memory, and sorts that still
exceed the setting that are logged as going to disk. If there appears to be plenty of
memory unused at peak times and disk sorts are happening, increase work_mem. If
memory use looks high, try lowering it instead.

Note that you can set work_mem for a single query before running it, which is the
preferred technique for situations like an occasional large report that runs each day.
If you know only a small number of clients can be running a query at a time, you
can be much more aggressive about how much memory is allocated just for those.

Chapter 10

[279]

work_mem is also used for some other sizing decisions in the query optimizer,
particularly in PostgreSQL 8.4 and later, where it's become an increasingly important
parameter. Hash table construction and materialization creation will also use this
value as a guide to how much memory they can use. This does increase the concern
with newer versions that it's hard to predict how many simultaneous operations using
work_mem worth of memory might happen. You can normally estimate the number of
sorts in a query just by looking at it or its EXPLAIN plan, but hash and materialization
use isn't so obvious from the query itself, and is more subject to shifting around as
the table changes. In PostgreSQL 8.4 and particularly 9.0, it's better to err on the size
of caution, using a smaller work_mem setting initially. Be careful about using a large
value here until you have an idea how aggressively clients are allocating working
memory for all of its possible purposes.

constraint_exclusion
If you are using partitioned tables that use constraints, enabling constraint_
exclusion allows the planner to ignore partitions that can't have the data being
searched for when that can be proven. This parameter originally defaulted to off,
meaning that unless toggled on partitioned tables, it will not work as expected.
Starting in PostgreSQL 8.4, this was improved such that a new default value,
partition will do the right thing here in most cases without adding the overhead
to the ones it isn't necessary for. It is theoretically possible to see a tiny performance
improvement by turning this feature off in newer versions where it defaults
to partition, in cases where there are no partitions on your system.

cursor_tuple_fraction
When you start a query using a cursor instead of a regular statement, PostgreSQL
doesn't know for sure how many rows you'll then retrieve. To bias towards
both the possibility that you will only access a subset of them, and the fact that
cursor-based programs tend to be sensitive to latency, cursor_tuple_fraction
allows you to lower the expected number of rows that cursor originated queries are
expected to return. If set to 1.0, cursors will work the same as regular queries. At
its default of 0.1, the query optimizer biases toward query plans that quickly return
rows, assuming that only 10% of the total rows will be requested. This works similar
to when a LIMIT is used on a query.

Query Optimization

[280]

Executing other statement types
The same basic execution logic is used to handle all four of the basic SQL query
types: SELECT, INSERT, UPDATE, and DELETE. For example, when doing an UPDATE,
the identified rows to update are found in a familiar way and then fed to an
Update node:

EXPLAIN ANALYZE UPDATE customers SET state=state WHERE customerid=1;

QUERY PLAN

Update (cost=0.00..0.28 rows=1 width=274) (actual time=63.289..63.289
rows=0 loops=1)

 -> Index Scan using customers_pkey on customers (cost=0.00..0.28
rows=1 width=274) (actual time=0.054..0.063 rows=1 loop

s=1)

 Index Cond: (customerid = 1)

 Total runtime: 63.415 ms

UPDATE and DELETE can execute efficiently by keeping track of the tuple ID uniquely
identifying each of the rows they are then called to operate on. Note that the
preceding UPDATE doesn't actually do anything—the values it's setting the state field
to are what it already contains. PostgreSQL never looks at what you're updating
to figure out if the change being made by an UPDATE does something or not; it will
always execute it instead. It can be a useful optimization to add a WHERE clause to
prevent this. To show this with an example that doesn't make any business sense,
let's say every customer were to suddenly be relocated to Maryland. The appropriate
query to do that would be:

UPDATE customers SET state='MD' WHERE NOT state='MD';

This will avoid adding a redundant row for the situation where the state was already
set to that value. Avoiding updates this way can save a lot of unnecessary writes and
vacuum cleanup in some applications.

Improving queries
Once you understand what a query is doing, getting it to do something better can
be a difficult road to walk down. There are some common techniques that mesh
with the areas PostgreSQL is known to be good and bad at.

Note that your first steps to improve queries should be to check if the statistics the
optimizer is working with, seem reasonable. If it's bad, you might fix the problem
by rewriting the query you have today, to improve things. But you can expect that

Chapter 10

[281]

future queries will run into the same class of issue, so fixing that from a statistics
standpoint is the preferred way, the one that's more likely to continue reflecting
future trends in the data. But improving the statistics about your data only goes
so far some days.

Optimizing for fully cached data sets
A basic assumption of the query optimizer is that data is not cached in memory, and
therefore all access to an index or table might require some disk activity to retrieve.
The planner parameters seq_page_cost and random_page_cost being very high
relative to cpu_index_tuple_cost reflects this pessimism.

If in fact the data you are reading is expected to be fully cached in memory, it can
be appropriate to dramatically lower these parameters in recognition of that fact.
In some cases, it might be appropriate to go so far to make index and table lookups
appear no more expensive than the CPU cost of looking at a single row:

SHOW cpu_index_tuple_cost;

 cpu_index_tuple_cost

 0.005

SET seq_page_cost=0.005;

SET random_page_cost=0.005;

It's unlikely you want to set values this low in your postgresql.conf for every
query, unless your entire database has proven to be quite small compared to system
RAM. As you can adjust these parameters at session time before executing a query,
you can tweak them down for the queries that benefit from knowing the completely
cached nature of the data they are operating on.

Testing for query equivalence
In one of the Hash Join examples, a complicated query using EXISTS was used
to determine whether each product had ever been ordered. There's theoretically
another way to figure that out: the inventory information for each product includes a
sales count. If those are complete—every product is included in that inventory, even
if it's never been sold—then a query looking for zero sales of an item should give the
same results:

SELECT prod_id FROM inventory WHERE sales=0;

Query Optimization

[282]

This looks like the same list, but it's long enough that comparing every entry
would be tedious. You can easily compare the output from two queries to see
if they produce the same rows using the EXCEPT construct:

SELECT prod_id FROM products p WHERE NOT EXISTS (SELECT 1 FROM orderlines
ol WHERE ol.prod_id=p.prod_id)

EXCEPT

SELECT prod_id FROM inventory WHERE sales=0;

This is particularly useful to know when working on optimizing queries by rewriting
them. It's easy to break a query when doing that such that it doesn't quite produce
the same output anymore. When you have a rewritten query that appears to give the
same results as an earlier one but runs faster, constructing a regression test showing
that no rows come out of an EXCEPT construct including the two versions is a handy
way to prove that.

Disabling optimizer features
Sometimes the optimizer doesn't do what you want, and you may want some tools
to either force it to change its mind or to see what alternatives it's considering but
rejecting. Consider this simple query that searches for one order and joins with its
matching customer record:

EXPLAIN ANALYZE SELECT C.customerid,O.orderid FROM customers C,orders O
WHERE c.customerid=o.customerid AND o.orderid=10000;

QUERY PLAN

Nested Loop (cost=0.00..16.55 rows=1 width=8) (actual time=0.038..0.049
rows=1 loops=1)

 -> Index Scan using orders_pkey on orders o (cost=0.00..8.27 rows=1
width=8) (actual time=0.018..0.020 rows=1 loops=1)

 Index Cond: (orderid = 10000)

 -> Index Scan using customers_pkey on customers c (cost=0.00..8.27
rows=1 width=4) (actual time=0.011..0.014 rows=1 loops=1)

 Index Cond: (c.customerid = o.customerid)

 Total runtime: 0.140 ms

This is a nice efficient query. But the type of join used is very sensitive to just how
many rows are expected to be returned from the orders table, ones that is done
then they have to be matched against customers. This style of query continues to be
preferred all the way up to one that selects 195 customers:

Chapter 10

[283]

EXPLAIN ANALYZE SELECT C.customerid,O.orderid FROM customers C,orders O
WHERE c.customerid=o.customerid AND o.orderid BETWEEN 11805 AND 12000;

QUERY PLAN

Nested Loop (cost=0.00..900.11 rows=195 width=8) (actual
time=0.048..4.042 rows=196 loops=1)

 -> Index Scan using orders_pkey on orders o (cost=0.00..13.15
rows=195 width=8) (actual time=0.028..0.450 rows=196 loops=1)

 Index Cond: ((orderid >= 11805) AND (orderid <= 12000))

 -> Index Scan using customers_pkey on customers c (cost=0.00..4.54
rows=1 width=4) (actual time=0.009..0.011 rows=1 loops=196)

 Index Cond: (c.customerid = o.customerid)

 Total runtime: 4.447 ms

Make the query just a bit less selective, so one more row is considered, and the
join type changes completely. When there are a fairly large number of matches
expected, the planner uses a Hash Join with an inner Index Scan for the order key,
while matching against the entire customers table. It builds a hash table holding
the relevant information from all 20000 rows of it instead of using a nested loop:

EXPLAIN ANALYZE SELECT C.customerid,O.orderid FROM customers C,orders O
WHERE c.customerid=o.customerid AND o.orderid BETWEEN 11804 AND 12000;

QUERY PLAN

Hash Join (cost=15.62..893.58 rows=196 width=8) (actual
time=1.390..72.653 rows=197 loops=1)

 Hash Cond: (c.customerid = o.customerid)

 -> Seq Scan on customers c (cost=0.00..676.00 rows=20000 width=4)
(actual time=0.007..33.279 rows=20000 loops=1)

 -> Hash (cost=13.17..13.17 rows=196 width=8) (actual
time=0.955..0.955 rows=197 loops=1)

 Buckets: 1024 Batches: 1 Memory Usage: 6kB

 -> Index Scan using orders_pkey on orders o (cost=0.00..13.17
rows=196 width=8) (actual time=0.029..0.541 rows=197 loops=1)

 Index Cond: ((orderid >= 11804) AND (orderid <= 12000))

 Total runtime: 73.077 ms

Query Optimization

[284]

That's exactly where the threshold is on this particular copy of the Dell Store
database: 195 records expected gets a Nested Loop join, 196 gets a Hash. This gives
you an idea just how fast a query plan can completely change on you in production.
If the execution time on the Hash Join version of this was really terrible, that one
extra record that showed up would kill the performance of your server. And unless
you were logging query plan EXPLAIN data, it's unlikely you'd have any idea what
hit you.

What if the whole table is being scanned? That's even less selective, and the Hash
Join is still preferred:

EXPLAIN ANALYZE SELECT C.customerid,O.orderid FROM customers C,orders O
WHERE c.customerid=o.customerid AND o.orderid BETWEEN 1 AND 12000;

QUERY PLAN

Hash Join (cost=926.00..1506.00 rows=12000 width=8) (actual
time=89.580..153.567 rows=12000 loops=1)

 Hash Cond: (o.customerid = c.customerid)

 -> Seq Scan on orders o (cost=0.00..280.00 rows=12000 width=8)
(actual time=0.012..21.598 rows=12000 loops=1)

 Filter: ((orderid >= 1) AND (orderid <= 12000))

 -> Hash (cost=676.00..676.00 rows=20000 width=4) (actual
time=89.536..89.536 rows=20000 loops=1)

 Buckets: 2048 Batches: 1 Memory Usage: 469kB

 -> Seq Scan on customers c (cost=0.00..676.00 rows=20000
width=4) (actual time=0.005..42.196 rows=20000 loops=1)

 Total runtime: 170.234 ms

Because query plan changes can be so disastrous to a production server, some
database administrators like to provide what are called optimizer hints to the server.
These are strong suggestions to the optimizer that it execute a query a particular
way. PostgreSQL doesn't explicitly support hints, based on two observations. First,
it makes users better motivated to provide feedback to the database developers
on what the optimizer does badly at, to continue improving it. Second, many plan
changes are actually the right thing to do. The original hint could have been based on
statistics that are now far out of date compared with what's actually in the table now.

There is a way to simulate something like an optimizer hint though. PostgreSQL
allows individual queries to turn off particular optimizer features. If you disable the
type of plan you'd prefer not to see, that's effectively hinting toward the plan you
want. The list of features you can toggle off as of PostgreSQL 9.0 are:

enable_bitmapscan enable_hashagg enable_hashjoin enable_indexscan
enable_mergejoin enable_nestloop enable_seqscan enable_sort enable_
tidscan enable_material

Chapter 10

[285]

Note that turning these off doesn't actually disable the feature; it just increases its
estimate cost so it's much less likely to be executed. There are some queries that it's
only possible to execute with a Nested Loop for example, so even if you turn off
enable_nestloop you'll still get one. And if you have no index on something, you
can turn off enable_seqscan but a Seq Scan will nonetheless happen.

Let's see what happens if Hash Joins are disabled on this query:

SET enable_hashjoin=off;

EXPLAIN ANALYZE SELECT C.customerid,O.orderid FROM customers C,orders O
WHERE c.customerid=o.customerid AND o.orderid BETWEEN 1 AND 12000;

QUERY PLAN

Merge Join (cost=0.05..1919.49 rows=12000 width=8) (actual
time=0.080..150.624 rows=12000 loops=1)

 Merge Cond: (c.customerid = o.customerid)

 -> Index Scan using customers_pkey on customers c (cost=0.00..963.25
rows=20000 width=4) (actual time=0.031..37.928 rows=20000 loops=1)

 -> Index Scan using ix_order_custid on orders o (cost=0.00..756.24
rows=12000 width=8) (actual time=0.032..36.635 rows=12000 loops=1)

 Filter: ((o.orderid >= 1) AND (o.orderid <= 12000))

 Total runtime: 167.991 ms

Now we get a Merge Join between the two tables, which turns out to be as or more
efficient in practice (even though the cost is slightly higher). What about if neither
Hash nor Merge Joins are allowed?

SET enable_hashjoin=off;

SET enable_mergejoin=off;

EXPLAIN ANALYZE SELECT C.customerid,O.orderid FROM customers C,orders O
WHERE c.customerid=o.customerid AND o.orderid BETWEEN 1 AND 12000;

QUERY PLAN

Nested Loop (cost=0.00..5750.08 rows=12000 width=8) (actual
time=0.038..184.266 rows=12000 loops=1)

 -> Seq Scan on orders o (cost=0.00..280.00 rows=12000 width=8)
(actual time=0.012..23.524 rows=12000 loops=1)

 Filter: ((orderid >= 1) AND (orderid <= 12000))

 -> Index Scan using customers_pkey on customers c (cost=0.00..0.44
rows=1 width=4) (actual time=0.006..0.007 rows=1 loops=12000)

 Index Cond: (c.customerid = o.customerid)

 Total runtime: 200.741 ms

Query Optimization

[286]

Now the old Nested Loop shows up, with a plan the optimizer considers much more
expensive than either of the other two. Because this is using the inner Index Scan
variation, the actual runtime isn't that much worse on this small data set, but on a
seriously large query this could be a disastrous plan.

Here's another example you can try that will show the various ways another pair of
tables can be joined as you disable optimizer options, presuming you start with a
fresh session with the default settings (not just after the above, where some of these
were already disabled):

EXPLAIN ANALYZE SELECT * FROM inventory,products WHERE inventory.prod_
id=products.prod_id;

SET enable_hashjoin = off;

EXPLAIN ANALYZE SELECT * FROM inventory,products WHERE inventory.prod_
id=products.prod_id;

SET enable_mergejoin = off;

EXPLAIN ANALYZE SELECT * FROM inventory,products WHERE inventory.prod_
id=products.prod_id;

SET enable_bitmapscan = off;

EXPLAIN ANALYZE SELECT * FROM inventory,products WHERE inventory.prod_
id=products.prod_id;

I find it particularly amusing to watch how creative the optimizer gets at using
increasingly less efficient index scans once the better join types go away. The last join
in particular will be extraordinarily slower than the other ones once all access to the
indexes is made impractical; here are some sample runtimes:

Join type Execution time (milliseconds)
Hash Join 119
Merge Join 126
Nested Loop with inner Index Scan 171
Nested Loop with inner Bitmap Index Scan 219
Nested Loop with inner Seq Scan 292491

Playing with these optimizer options to work around a query problem is tempting,
because it can feel like an easy fix to a bad plan issue. It's dangerous though, because
the plan that makes sense today can be totally wrong when either the amount or
distribution of your data changes in the future. The reason why good tutorials
about database queries try to explain how queries execute, including details like
how statistics and costs fit together, is because understanding that theory is what
can give you the background to make difficult decisions in this area.

Chapter 10

[287]

Working around optimizer bugs
Only if you can't get the statistics or cost data to work as expected should you then
take drastic measures like disabling optimizer features. But knowing that flags
such as enable_hashjoin and enable_seqscan exist can be valuable for another
reason altogether. Sometimes, bad optimizer behavior can result from a database
bug or limitation. If you know or suspect that, toggling optimizer features off can
help you determine which code path might be involved in your issue. Also, there's
nothing wrong with temporarily working around a bad plan by putting one of these
optimizer hacks into place as a triage measure, to buy yourself time to figure out
what's really wrong. Resist doing that in the server configuration through—these
sort of changes belong in the code that executes the individual problem queries,
not server wide.

Avoiding plan restructuring with OFFSET
Another technique that shows up sometimes to work around bad plan issues is
using OFFSET 0 strategically in a query. Having no offset from when results return
doesn't change the query result, but it is considered a volatile change that prevents
some times of plan node changes—sometimes in a good way, despite what the
planner predicts.

A good example of how this can work comes from a potential performance
regression from certain types of joins that was introduced in PostgreSQL 8.4, and
also still exists in 9.0. It's an interesting case study in how progress in improving the
PostgreSQL optimizer tends to happen. The problem is described by Andres Freund
using a test case and associated query plans at http://archives.postgresql.
org/pgsql-hackers/2010-05/msg00889.php but not with actual data. It's possible
to recreate the basic setup using the Dell Store data. Let's say you have a small set of
orderline data you're searching for. You want to confirm the existence of matching
customer and order rows that go along with this fairly small set of orderlines.
That doesn't have a strong real-world meaning, given the existence of those rows
is guaranteed by foreign key constraints. But a query doing that and showing the
problem behavior looks like this:

EXPLAIN ANALYZE

SELECT

 l.prod_id

FROM

 orderlines l

WHERE

 EXISTS (

Query Optimization

[288]

 SELECT *

 FROM customers

 JOIN orders USING (customerid)

 WHERE orders.orderid = l.orderid

)

 AND l.orderdate='2004-12-01';

QUERY PLAN

Hash Semi Join (cost=1596.00..2708.47 rows=155 width=4) (actual
time=192.570..194.552 rows=183 loops=1)

 Hash Cond: (l.orderid = orders.orderid)

 -> Seq Scan on orderlines l (cost=0.00..1109.38 rows=155 width=8)
(actual time=27.980..29.440 rows=183 loops=1)

 Filter: (orderdate = '2004-12-01'::date)

 -> Hash (cost=1446.00..1446.00 rows=12000 width=4) (actual
time=164.545..164.545 rows=12000 loops=1)

 Buckets: 2048 Batches: 1 Memory Usage: 282kB

 -> Hash Join (cost=926.00..1446.00 rows=12000 width=4) (actual
time=89.383..145.439 rows=12000 loops=1)

 Hash Cond: (orders.customerid = customers.customerid)

 -> Seq Scan on orders (cost=0.00..220.00 rows=12000
width=8) (actual time=0.008..16.105 rows=12000 loops=1)

 -> Hash (cost=676.00..676.00 rows=20000 width=4) (actual
time=89.347..89.347 rows=20000 loops=1)

 Buckets: 2048 Batches: 1 Memory Usage: 469kB

 -> Seq Scan on customers (cost=0.00..676.00
rows=20000 width=4) (actual time=0.007..42.141 rows=20000 loops=1)

 Total runtime: 195.460 ms

What the database is doing here is constructing a hash table that includes every
customer and order entry, on the assumption it can then efficiently join against the
matching orderlines that meet the criteria. It is even guessing right about how many
orderliness will come out here—there are 183 rows returned, it expected 155. But the
setup time to build this whole hash structure is high just to join against such a small
number of rows. The optimization that tries to do that with a Semi-Join instead was
introduced in 8.4. A Semi-Join is one where the optimizer only outputs outer rows
that join to at least one inner row, and only once each.

Chapter 10

[289]

This particular type of setup—start with a selective query against a low-level table,
then search for the existence of matching records in ones that join to it—is not an
uncommon one. I have run into this issue on a live customer system and seen this
sort of plan give a dramatic slowdown compared to earlier PostgreSQL versions.

What can you do about it? If the existence checks include a volatile bit of data the
planner can't assume it can transform around, it can't do this optimization. One such
change you can easily use is OFFSET 0, a volatile change which the planner thinks
changes queries results in a way it can't predict, but it really doesn't. Watch what
happens when that is judiciously inserted into the above query:

EXPLAIN ANALYZE

SELECT

 l.prod_id

FROM

 orderlines l

WHERE

 EXISTS (

 SELECT *

 FROM customers

 JOIN orders USING (customerid)

 WHERE orders.orderid = l.orderid

 OFFSET 0

)

 AND l.orderdate='2004-12-01';

QUERY PLAN

Seq Scan on orderlines l (cost=0.00..999932.05 rows=78 width=4) (actual
time=33.946..43.271 rows=183 loops=1)

 Filter: ((orderdate = '2004-12-01'::date) AND (SubPlan 1))

 SubPlan 1

 -> Limit (cost=0.00..16.55 rows=1 width=300) (actual
time=0.033..0.033 rows=1 loops=183)

 -> Nested Loop (cost=0.00..16.55 rows=1 width=300) (actual
time=0.028..0.028 rows=1 loops=183)

 -> Index Scan using orders_pkey on orders
(cost=0.00..8.27 rows=1 width=36) (actual time=0.010..0.010 rows=1
loops=183)

 Index Cond: (orderid = $0)

Query Optimization

[290]

 -> Index Scan using customers_pkey on customers
(cost=0.00..8.27 rows=1 width=268) (actual time=0.009..0.009 rows=1
loops=183)

 Index Cond: (customers.customerid = orders.
customerid)

 Total runtime: 43.774 ms

Now, instead of joining against the big hash structure, the planner just finds the 183
orderlines it's interested in, and executes an index lookup for each of them probing
into the orders and customers table. (Note the rare SubPlan node type making an
appearance as part of that). This was what PostgreSQL 8.3 and earlier versions
always did, and by defeating the ability to use the newer optimization that behavior
is back again. Note how the cost for this is believed to be dramatically higher, when
in fact the actual runtime is much faster.

While there is the occasional unfortunate regression like this one, for the most part
the PostgreSQL query optimizer gets better with every version. Now that the type
of query that executes badly here is well understood, and reproducible test cases
have appeared, the performance regression seen by this type of join issue is on the
roadmap for improvement in PostgreSQL 9.1.

Much like faking optimizer hinting by turning off features, the need to use tricks like
OFFSET 0 to prevent bad planner behavior should continue to be less necessary in
the future. But it is a handy trick to have in the toolbox when trying to force a query
structure you know is better than the one the optimizer prefers. And seeing what
happens to plans when you limit the optimizer's ability to restructure them like
this is educational, too.

External trouble spots
It's also possible to have a query run slowly for reasons that have nothing to do
with the query plan itself.

One such situation is where you have triggers running against a table being
referenced, particularly in cases where it's an UPDATE or INSERT running instead
of just a regular query. The overhead of triggers can be high, particularly if there
aren't any indexes on the underlying foreign keys.

Another issue you can run into is that dead rows can clog a query from executing as
fast as expected. This is particularly true if you are frequently updating a popular set
of rows without running VACUUM often enough. Doing anything with those rows can
then require large amounts of wasted time, reading the non visible data, even when
doing an index scan.

Chapter 10

[291]

SQL Limitations
SQL is good at a number of things. There are some things it's known to be quite bad
at, most of which result from returned rows having no knowledge of one another.

Numbering rows in SQL
Let's say you wanted to know who your top five customers are. That's an easy
enough query to write:

SELECT customerid,sum(netamount) as sales FROM orders GROUP BY customerid
ORDER BY sales DESC LIMIT 5;

 customerid | sales

------------+---------

 15483 | 1533.76

 9315 | 1419.19

 15463 | 1274.29

 10899 | 1243.14

 3929 | 1196.87

Here's a challenge for you: how would you write this query to also include that sales
ranking for each customer, from 1 to 5, as part of this list? It's not a simple problem.

One of the subtle things about SQL queries is that each row is its own independent
piece. It doesn't have any notion of how many other rows exist in the result set,
where it stands in relation to the others; it's just a row of data. There are a couple
of ways to solve this problem by using temporary tables, joining the output from
generate_series against a primary key when one exists, and processing in a stored
procedure. There's even a portable SQL way to do this using something like the
following downright twisted subquery, which joins each entry in the table with
itself and counts how many entries are higher than it to get a rank:

SELECT

 (SELECT COUNT(*) FROM

 (SELECT

 sum(netamount) as sales

 FROM orders GROUP BY customerid

) AS orderers WHERE orderers.sales>=leaders.sales

) AS rank,

 leaders.*

FROM

 (SELECT

Query Optimization

[292]

 customerid,sum(netamount) as sales

 FROM orders GROUP BY customerid ORDER BY sales DESC LIMIT 5

) AS leaders;

 rank | customerid | sales

------+------------+---------

 1 | 15483 | 1533.76

 2 | 9315 | 1419.19

 3 | 15463 | 1274.29

 4 | 10899 | 1243.14

 5 | 3929 | 1196.87

Not only is this terribly complex, while it looks fine on this subset it falls apart
the minute two customers with matching order balances show up. It's possible
to improve that using DISTINCT to note when that happens and add a tie-breaker,
but then you'd be looking at an even crazier query.

This example show the sort of fundamental limitations you can run into with
how SQL works. You can't know where rows are in relation to one another. You
can't reference what data is in the row before or after the one you're currently
referencing either. Another "fun" query to try and write would be to ask for just
what the difference in sales volume between each of these top five customers. That
requires a similarly painful self-join or dropping into to a procedural language.

Using Window functions for numbering
PostgreSQL 8.4 introduces support to handle this sort of problem using features
added to newer SQL standards. These add the concept of a window over which you
can get additional data. For example, you can make your window in this type of
query to line up with each customer, then use the row_number() function to find
out the ranking:

SELECT row_number() OVER (ORDER BY sum(netamount) DESC) AS rank,customeri
d,sum(netamount) as sales FROM orders GROUP BY customerid ORDER BY sales
DESC LIMIT 5;

 rank | customerid | sales

------+------------+---------

 1 | 15483 | 1533.76

 2 | 9315 | 1419.19

 3 | 15463 | 1274.29

 4 | 10899 | 1243.14

 5 | 3929 | 1196.87

That's not only a whole lot cleaner, it's way more efficient too.

Chapter 10

[293]

Using Window functions for cumulatives
As a second example, consider the case where you're computing sales for each
month orders were placed:

SELECT EXTRACT(year FROM orderdate) AS year, EXTRACT(month FROM
orderdate) AS month,sum(netamount) as sales FROM orders GROUP BY
year,month ORDER BY year,month;

 year | month | sales

------+-------+-----------

 2004 | 1 | 199444.50

 2004 | 2 | 200269.86

 2004 | 3 | 194516.68

 2004 | 4 | 200131.18

 2004 | 5 | 197131.77

 2004 | 6 | 199919.21

 2004 | 7 | 190953.70

 2004 | 8 | 194102.55

 2004 | 9 | 196798.83

 2004 | 10 | 195798.80

 2004 | 11 | 199882.86

 2004 | 12 | 202769.80

What if you wanted a cumulative total at each point during the year? As that
problem also requires referencing things that are in other rows, it's again not
something you can do in the standard SQL model easily. Try it out; it's another fun
challenge. Possible solutions include building a complicated query that joins the
above with itself, or bypassing SQL limitations altogether by using a function.

But you can easily wrap that with a window function instead too:

SELECT *,SUM(sales) OVER (ORDER BY year,month) as cumulative FROM (SELECT
EXTRACT(year FROM orderdate) AS year, EXTRACT(month FROM orderdate) AS
month,sum(netamount) as sales FROM orders GROUP BY year,month ORDER BY
year,month) as m ORDER BY year,month;

 year | month | sales | cumulative

------+-------+-----------+------------

 2004 | 1 | 199444.50 | 199444.50

 2004 | 2 | 200269.86 | 399714.36

 2004 | 3 | 194516.68 | 594231.04

 2004 | 4 | 200131.18 | 794362.22

Query Optimization

[294]

 2004 | 5 | 197131.77 | 991493.99

 2004 | 6 | 199919.21 | 1191413.20

 2004 | 7 | 190953.70 | 1382366.90

 2004 | 8 | 194102.55 | 1576469.45

 2004 | 9 | 196798.83 | 1773268.28

 2004 | 10 | 195798.80 | 1969067.08

 2004 | 11 | 199882.86 | 2168949.94

 2004 | 12 | 202769.80 | 2371719.74

That's not only simpler code to maintain, it's going to be much faster than either of
the other solutions too. The plan for it looks like this:

QUERY PLAN

 WindowAgg (cost=453.75..464.70 rows=365 width=48) (actual
time=110.635..110.749 rows=12 loops=1)

 -> Sort (cost=453.75..454.66 rows=365 width=12) (actual
time=110.592..110.610 rows=12 loops=1)

 Sort Key: (date_part('year'::text, (orders.orderdate)::timestamp
without time zone)), (date_part('month'::text, (orders.orderdat

e)::timestamp without time zone))

 Sort Method: quicksort Memory: 17kB

 -> HashAggregate (cost=430.00..438.21 rows=365 width=12)
(actual time=110.503..110.530 rows=12 loops=1)

 -> Seq Scan on orders (cost=0.00..340.00 rows=12000
width=12) (actual time=0.026..57.025 rows=12000 loops=1)

 Total runtime: 110.902 ms

This section has just scratched the surface of what it's possible to do with window
queries. If you're using PostgreSQL 8.4 or later, and you find yourself with queries
or procedural code that seems to be working to compute things like row numbers or
cumulative values, you should consider whether those can be rewritten to use SQL
windows instead. The techniques it allows are extremely powerful and efficient.

Summary
A major goal of this chapter was not only to show you how a variety of queries
execute, but to demonstrate through many examples how to set up a query testing
playground for exploring that yourself. You shouldn't just read this chapter. You
should load the Dell Store 2 data into your system and experiment with the
queries yourself. If you're using PostgreSQL 9.0, the results you see should be
nearly identical to the examples shown.

Chapter 10

[295]

Try to understand how the queries are actually executed in each of these cases, based
on the statistics available. Adjust the statistics collected and see if anything changes.
Write new queries and see if the plans you get match what you expected. Watch how
the optimizer degrades as you take away its advanced features. That sort of practice
is the only way to really become an expert at query optimization. Once you see how
to read query plans and understand how each of the underlying node types work on
this relatively simple database, then you should be armed to wrestle the queries on a
production database.

Queries are executed as a series of nodes that each do a small task, such as a
form of table access, aggregation, or joining.
Table access:

Sequential scans give immediate results, and are the fastest
way to scan small tables or large ones where a significant
portion of the table will be returned.
Index scans involve random disk access and still have to
read the underlying data blocks for visibility checks. But the
output can be quite selective and ordered usefully.
Bitmap index scans use sequential disk reads but still allow
index selectivity on multiple indexes. There is both time and
memory overhead involved in building the hash structure
before returning any rows though.

Joins:
Nested Loop joins are generally avoided due to their expense.
But when their inner query is small because it uses an index,
their ability to quickly output small numbers of rows can
make them optimal.
Merge Joins require ordered inputs, making them slow to
produce any output unless all inputs are already sorted—and
even index scans require some random access. It's often
preferred for larger data sets where hashing would take too
much memory and a Nested Loop would be inefficient.
Hash Joins scan their inner table to produce a hash table to
join against, which also has a lot of overhead to produce the
first row of output.

•

•

°

°

°

•

°

°

°

Query Optimization

[296]

Troubleshooting query issues
Variation between estimated and actual rows can cause major
planning issues. Looking into the underlying statistics is one
way to determine why that's happening; at a minimum, make
sure you have recent statistics from an ANALYZE.
Consider portions of the query that actually had the longest
execution time, and see if they had an appropriate matching
cost. If not, this may also suggest a statistics problem.
Be systematic about looking for all the common causes for
query issues to see if they apply to your case.
Make sure that optimizer parameters like effective_cache_
size and work_mem are sized appropriately for the system.
If nothing else works, consider forcing alternate plans
by disabling optimizer features that result in poorly
executed plans.

SQL WINDOW queries can be extremely efficient in situations where knowing
more about a row's context and data in surrounding rows simplifies the logic.

•

°

°

°

°

°

•

Database Activity and
Statistics

PostgreSQL includes a subsystem named the statistics collector that allows
monitoring various aspects of the database internals. Each of the processes in the
server send statistics messages to the collector, which then totals the results and
periodically publishes the results to where you can see them. By default (the interval
is a compile-time option), statistics updates are published every half second. Each
of the statistics values is available using a set of functions that return the current
value, all documented at http://www.postgresql.org/docs/current/static/
monitoring-stats.html.

Statistics views
In practice, a series of views that organize this data are how most people access the
statistics collector's output. Reading the SQL source code to these views is quite
informative for learning how they can be used. If you have a PostgreSQL source code
tree, the file that creates these views is src/backend/catalog/system_views.sql,
in an installed database binary tree you'll find them at share/system_views.sql,
and alternately you can download the source code at http://anoncvs.postgresql.
org/cvsweb.cgi/pgsql/src/backend/catalog/system_views.sql.

A simple view from there that shows how these are commonly constructed is the
pg_stat_bgwriter view introduced in version 8.3:

CREATE VIEW pg_stat_bgwriter AS

 SELECT

 pg_stat_get_bgwriter_timed_checkpoints() AS checkpoints_timed,

 pg_stat_get_bgwriter_requested_checkpoints() AS checkpoints_req,

Database Activity and Statistics

[298]

 pg_stat_get_bgwriter_buf_written_checkpoints() AS buffers_
checkpoint,

 pg_stat_get_bgwriter_buf_written_clean() AS buffers_clean,

 pg_stat_get_bgwriter_maxwritten_clean() AS maxwritten_clean,

 pg_stat_get_buf_written_backend() AS buffers_backend,

 pg_stat_get_buf_alloc() AS buffers_alloc;

As you can see, this view is just a thin wrapper around the set of functions that each
return the individual statistics counters in this area. The rest of the statistics views
are similarly constructed. In these systems, views are a useful way to learn how to
build queries that execute against the system catalogs to dig information out of them.
The exact way the statistics ones work is valuable to understand because sometimes,
the view doesn't provide exactly the information you'd like to see, and you may
have to go directly to the counters to get what you really want. This was the case
in the "Autovacuum triggering" example given in chapter 7, Routine Maintenance. It
was impractical to use the pg_stat_user_tables view because it didn't quite have
all the information needed, and the view itself abstracted away critical information
needed to join against the other system catalogs needed.

You can find out all the available catalog views using the following query:

SELECT

 n.nspname as "Schema",

 c.relname as "Name",

 CASE c.relkind WHEN 'r' THEN 'table' WHEN 'v' THEN 'view' WHEN 'i' THEN
'index' WHEN 'S' THEN 'sequence' WHEN 's' THEN 'special' END as "Type",

 r.rolname as "Owner"

FROM pg_catalog.pg_class c

 JOIN pg_catalog.pg_roles r ON r.oid = c.relowner

 LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace

WHERE c.relkind IN ('v','')

 AND n.nspname = 'pg_catalog'

 AND n.nspname !~ '^pg_toast'

 AND pg_catalog.pg_table_is_visible(c.oid)

ORDER BY 1,2;

This is exactly the same query psql uses to show you view information when
executing \dv (you can see that by running psql -E), except that where that
version excludes pg_catalog entries, this version only shows views belonging
to that schema.

Chapter 11

[299]

You can actually get the same data out of a much simpler query:

SELECT schemaname,viewname FROM pg_views WHERE schemaname='pg_catalog'
ORDER BY viewname;

But that's a less useful and educational base to build more complicated catalog
queries on.

Cumulative and live views
There are two types of information you can monitor from the database. The main
statistics are stored into counters. These counters start at 0 when you create a new
database cluster, increasing with all activity related to that statistic. Counters in this
category include pg_stat_database, pg_stat_bgwriter, and all of the other views
whose names start with pg_stat.

The exact way that you reset these counters back to 0 again varies quite a bit based
on your PostgreSQL version:

Version 8.1: pg_stat_reset() resets all statistics. Enabling
stats_reset_on_server_start in the postgresql.conf file will reset
everything each time the server is started.
Version 8.2: pg_stat_reset() resets just block and row level statistics.
Enabling stats_reset_on_server_start allows resetting all statistics,
including the database and cluster wide ones, each time the server is started.
Version 8.3, 8.4: pg_stat_reset() resets all statistics just for the
current database. There is no way to reset cluster wide statistics such
as pg_stat_bgwriter.
Version 9.0: pg_stat_reset() resets all statistics just for the current
database. pg_stat_reset_shared('bgwriter') can be used to reset
pg_stat_bgwriter. pg_stat_reset_single_table_counters() and
pg_stat_reset_single_function_counters() can be used to reset
individual table, index, or function statistics.

It's important to note which fields in a statistics view are cumulative and which are
fixed with information like the table name. In order to make sense of the cumulative
ones, you should capture that data regularly, with a timestamp, and note how
much the values have changed during that time period. An example of how to do
this manually for the pg_stat_bgwriter data is given at the end of this chapter.
Recommended practice here is to track this information with a monitoring/trending
tool that knows how to work with cumulative counters, which is covered in the
next chapter.

•

•

•

•

Database Activity and Statistics

[300]

In addition to the straight statistics counters, there are some live views of database
activity that give a snapshot of what's happening right now. These views give
transitory information, and while you can compute statistics from them that isn't
their primary purpose. Views in this category include pg_stat_activity, pg_locks,
and pg_prepared_xacts. Note that prepared transactions, the thing monitoring
by pg_prepared_xacts, are used for two-phase commit—there is no relation to
the much more common use of prepared statements in database applications.
Monitoring prepared transactions isn't covered here, but you can find basic
documentation about it at http://www.postgresql.org/docs/current/static/
view-pg-prepared-xacts.html if you are using PREPARE TRANSACTION in
your application.

Table statistics
Basic statistics about each table in your database are available in the view pg_stat_
all_tables. Since you probably don't want that cluttered by the many system catalog
tables, the data in there is split into two additional views: pg_stat_sys_tables, which
only shows the system tables and pg_stat_user_tables, which as you might expect
only shows your tables. In most cases pg_stat_user_tables is the one you'll want
to look at.

The first useful thing you can use this data for is monitoring how well vacuum
is working on your database. You get estimated live and dead tuple counts and
timestamps for when vacuum and autovacuum last processed the table (these are
not all available before version 8.3). Information about how to monitor that data is
covered in Chapter 7, Routine Maintenance.

You can use this view to determine whether tables are being accessed by sequential
or index scans:

pgbench=# SELECT schemaname,relname,seq_scan,idx_scan,cast(idx_scan AS
numeric) / (idx_scan + seq_scan) AS idx_scan_pct FROM pg_stat_user_tables
WHERE (idx_scan + seq_scan)>0 ORDER BY idx_scan_pct;

schemaname | relname | seq_scan | idx_scan |idx_scan_pct

-----------+------------------+----------+----------+------------

public | pgbench_branches | 3 | 0 | 0.00000

public | pgbench_tellers | 2 | 0 | 0.00000

public | pgbench_accounts | 4 | 144345 | 0.99997

In this tiny pgbench database, access to pgbench_branches and pgbench_tellers is
being done by sequential scan because all of the data fits into a single data page. The
pgbench_accounts table is large enough that SELECT statements on it are using an
index to look up values.

Chapter 11

[301]

What is likely more interesting is exactly how many tuples/rows were actually
processed by these scans. This example omits the schema name to make it easier
to fit here, and note that it and the above have been rounded for better display;
they will show more numeric precision when you run these queries:

pgbench=# SELECT relname,seq_tup_read,idx_tup_fetch,cast(idx_tup_fetch AS
numeric) / (idx_tup_fetch + seq_tup_read) AS idx_tup_pct FROM pg_stat_
user_tables WHERE (idx_tup_fetch + seq_tup_read)>0 ORDER BY idx_tup_pct;

 relname | seq_tup_read | idx_tup_fetch | idx_tup_pct

-----------------+--------------+---------------+------------

pgbench_branches | 3 | 0 | 0.00000

pgbench_tellers | 20 | 0 | 0.00000

pgbench_accounts | 400000 | 144345 | 0.26517

Here you can see that each of the four sequential scans shown in the preceding
example likely accessed 100,000 tuples each to reach this total. They could easily
have had more of an impact on the database than the 144,345 index scans, even
though there were only four of them. Both the number of scans and how many total
tuples each fetched are interesting numbers to monitor, as they suggest both how
many queries run and the total volume executed by them.

A similar query worth monitoring is how often "HOT" is being used to update rows,
instead of a less efficient regular update:

pgbench=# SELECT relname,n_tup_upd,n_tup_hot_upd,cast(n_tup_hot_upd AS
numeric) / n_tup_upd AS hot_pct FROM pg_stat_user_tables WHERE n_tup_
upd>0 ORDER BY hot_pct;

 relname | n_tup_upd | n_tup_hot_upd | hot_pct

-----------------+-----------+---------------+--------

pgbench_accounts | 28142 | 26499 | 0.94161

pgbench_branches | 28142 | 28142 | 1.00000

pgbench_tellers | 28142 | 28142 | 1.00000

These numbers are a bit different in that, n_tup_upd is already a total that n_tup_
hot_upd is a subset of; you don't need to add them together. In this example, almost
all of the updates being done are using HOT, which is what you'd like to see for best
UPDATE performance. This percentage is particularly valuable to monitor when doing
initial testing of your database, to confirm whether or not you are satisfying the
conditions HOT kicks in for.

Database Activity and Statistics

[302]

A final useful derived view is to consider the insert/update/delete characteristics
of your tables:

pgbench=# SELECT relname,cast(n_tup_ins AS numeric) / (n_tup_ins + n_tup_
upd + n_tup_del) AS ins_pct,cast(n_tup_upd AS numeric) / (n_tup_ins + n_
tup_upd + n_tup_del) AS upd_pct, cast(n_tup_del AS numeric) / (n_tup_ins
+ n_tup_upd + n_tup_del) AS del_pct FROM pg_stat_user_tables ORDER BY
relname;

 relname | ins_pct | upd_pct | del_pct

-----------------+---------+---------+--------

pgbench_accounts | 0.78038 | 0.21961 | 0.00000

pgbench_branches | 0.00003 | 0.99996 | 0.00000

pgbench_history | 1.00000 | 0.00000 | 0.00000

pgbench_tellers | 0.00035 | 0.99964 | 0.00000

This confirms that pgbench_history is what's sometimes called an append-only
table, one that is inserted into but never updated or deleted from. It also suggests
that pgbench_branches and pgbench_tellers are being heavily thrashed around
with updates relative to insertions, which can be valuable for determining what
tables are likely to need periodic REINDEX operations. You can use the deletion
percentage figure for a similar purpose, finding tables that are likely to have large
number of sparse data or index blocks that you might need an operation like
CLUSTER to fully clean up after.

Table I/O
In addition to the operation statistic counts, there are also a set of counters in the
database that concentrate on physical I/O in pg_statio_user_tables (with all/
system variations too). The first pair of fields monitor use of the shared_buffers
structure that caches table data, which is called the heap in this context. When a read
happens, the database distinguishes between whether that read could be satisfied
using a block already in the database buffer cache (a heap block hit), or whether it
required an operating system read to satisfy.

pgbench=# SELECT relname,cast(heap_blks_hit as numeric) / (heap_blks_hit
+ heap_blks_read) AS hit_pct,heap_blks_hit,heap_blks_read FROM pg_statio_
user_tables WHERE (heap_blks_hit + heap_blks_read)>0 ORDER BY hit_pct;

 relname | hit_pct | heap_blks_hit | heap_blks_read

-----------------+---------+---------------+---------------

pgbench_accounts | 0.98708 | 245298 | 3210

pgbench_history | 0.99362 | 28499 | 183

pgbench_tellers | 0.99983 | 61091 | 10

pgbench_branches | 0.99987 | 80176 | 10

Chapter 11

[303]

This is a well cached database; almost none of the reads require actual disk I/O.

Not all heap block reads actually turn into physical disk I/O, they might
instead read the data from the operating system cache. Currently the
database doesn't have any idea which read happens. But it is possible
to monitor this using the "Dtrace" on operating systems that support it,
using the probes available in PostgreSQL.

A similar query shows all of the disk I/O for every index on this table:

pgbench=# SELECT relname,cast(idx_blks_hit as numeric) / (idx_blks_hit +
idx_blks_read) AS hit_pct,idx_blks_hit,idx_blks_read FROM pg_statio_user_
tables WHERE (idx_blks_hit + idx_blks_read)>0 ORDER BY hit_pct;

 relname | hit_pct | idx_blks_hit | idx_blks_read

------------------+---------+--------------+--------------

 pgbench_branches | 0.33333 | 1 | 2

 pgbench_tellers | 0.33333 | 1 | 2

 pgbench_accounts | 0.99945 | 405206 | 221

You don't see pgbench_history in the preceding example, because it has no indexes.

The table I/O statistics also include counters for I/O related to oversized data stored
using the database's TOAST scheme. If your system includes TOASTed data, you
need to account for those reads and writes when computing the total read load
associated with a table and its indexes. The three main components to reading blocks
in the table (as opposed to the index) in this situation—the table blocks, the TOAST
blocks, and the TOAST index blocks—should be aggregated together into a total:

SELECT *,

 (heap_blks_read + toast_blks_read + tidx_blks_read) AS total_blks_read,

 (heap_blks_hit + toast_blks_hit + tidx_blks_hit) AS total_blks_hit

FROM pg_statio_user_tables;

The hit ratio for that total should be the figure you follow. Since that approach works
fine for non-TOAST tables—the TOAST parts will just be zero—always including the
TOAST figures is a good habit to adopt.

Index statistics
There are a parallel set of statistics to the table ones that break down activity for each
individual index. pg_stat_user_indexes also has system/all versions available,
and it gives information about how many index scans were done and the rows
returned by them.

Database Activity and Statistics

[304]

The naming of the fields in this view are more complicated to distinguish among
though. Two fields that look similar are subtly different:

idx_tup_read: "number of index entries returned by index scans".
idx_tup_fetch: "number of live table rows fetched by simple index scans
using that index". This number will often be a bit smaller than the idx_tup_
read value because it won't include dead or not yet committed rows in its
count. In addition, the use of "simple" here means that the index access was
not a bitmap index scan. When those execute, there are at least two indexes
involved. That makes it impossible to properly account for what index was
responsible for a particular row being fetched. The server therefore doesn't
include it in this total for any index, instead only incrementing the index
tuple fetch figure for the table as a whole instead.

Because there are so many situations where idx_tup_fetch isn't incremented,
if you want to track how heavily an index is being used from the system loading
performance, idx_tup_read is the better statistic.

One interesting figure you can derive from this data is how many rows this index
scan returns on average, given how the index is being used:

pgbench=# SELECT indexrelname,cast(idx_tup_read AS numeric) / idx_scan AS
avg_tuples,idx_scan,idx_tup_read FROM pg_stat_user_indexes WHERE idx_scan
> 0;

 indexrelname | avg_tuples | idx_scan | idx_tup_read

----------------------+------------+----------+-------------

pgbench_accounts_pkey | 1.01016 | 200629 | 202668

This shows that pgbench is only grabbing a single row most of the time, which is
unsurprising for a primary key. The small amount avg_tuples here is greater than
1.0; this reflects the occasional time a dead row was scanned. This average can give
you an idea of how often larger index range scans are being used.

The main thing that the counts in pg_stat_user_indexes are useful for, is
determining which indexes are actually being used by your application. Since
indexes add overhead to the system, ones that aren't actually being used to satisfy
queries should be removed from the design. The easiest way to find such indexes is
to look for low values for idx_scan, which will appear at the top of this query:

SELECT

 schemaname,

 relname,

 indexrelname,

 idx_scan,

•

•

Chapter 11

[305]

 pg_size_pretty(pg_relation_size(i.indexrelid)) AS index_size

FROM

 pg_stat_user_indexes i

 JOIN pg_index USING (indexrelid)

WHERE

 indisunique IS false

ORDER BY idx_scan,relname;

This specifically excludes indexes that are enforcing a unique constraint, which you
likely can't drop even if they are minimally used.

Index I/O
The same basic I/O statistics available for indexes are also available broken down for
each index:

pgbench=# SELECT indexrelname,cast(idx_blks_hit as numeric) / (idx_blks_
hit + idx_blks_read) AS hit_pct,idx_blks_hit,idx_blks_read FROM pg_
statio_user_indexes WHERE (idx_blks_hit + idx_blks_read)>0 ORDER BY hit_
pct; indexrelname | hit_pct | idx_blks_hit | idx_blks_read

----------------------+---------+--------------+--------------

pgbench_branches_pkey | 0.33333 | 1 | 2

pgbench_tellers_pkey | 0.33333 | 1 | 2

pgbench_accounts_pkey | 0.99945 | 405206 | 221

Indexes tend to be better cached than their underlying tables. If they're not, that's
another hint that you might not be indexing your data properly.

Database wide totals
Many of the same pieces of data available at the table level are also summarized per
database. You can get the following information out of pg_stat_database and use
it in similar ways to pg_stat_user_tables and pg_statio_user_tables:

SELECT datname,blks_read,blks_hit,tup_returned,tup_fetched,tup_inserted
,tup_updated,tup_deleted FROM pg_stat_database;

In addition, there are some useful transaction commit statistics available, as well as a
count of the total active client backend connections active for each database:

SELECT datname,numbackends,xact_commit,xact_rollback from pg_stat_
database;

Database Activity and Statistics

[306]

Connections and activity
pg_stat_activity provides a way to get a snapshot of what every client on the
server is currently doing. Because it includes a process ID, on UNIX-like systems pg_
stat_activity is also useful to line up with information collected at the operating
system level, by utilities such as top or ps.

The simplest thing to do with this view is to count how many client backends are
currently active:

pgbench=# SELECT count(*) FROM pg_stat_activity WHERE NOT procpid=pg_
backend_pid();

 count

 4

As the query itself will normally appear in the results, that's filtered out by looking
up its process ID and excluding it. This is a good practice to get into queries against
this view. This total gives you an idea how close you are to reaching the server's
max_connections at any time, and monitoring a high-water mark for its value
is a good practice to let you know when you're likely to exceed it.

You can use pg_stat_activity to see how long a backend has been running and
whether it's waiting for anything right now:

pgbench=# SELECT procpid,waiting,current_timestamp - least(query_
start,xact_start) AS runtime,substr(current_query,1,25) AS current_query
FROM pg_stat_activity WHERE NOT procpid=pg_backend_pid();

procpid | waiting | runtime | current_query

--------+---------+------------------+--------------------------

 30302 | f | 00:00:00.006102 | SELECT abalance FROM pgbe

 30303 | f | 00:00:00.000928 | <IDLE>

 30304 | f | -00:00:00.000376 | <IDLE>

 30305 | f | 00:00:00.000144 | SELECT abalance FROM pgbe

This shows a couple of common tricks to get output from pg_stat_activity down
to a manageable set. In addition to blocking the query itself, the very large query text
is cut down to a reasonable size to fit on the screen.

This example also demonstrates two issues that you can run into that aren't so easy
to fix. One is that when a backend client has stopped doing work, it will appear as
either <IDLE> or <IDLE> in transaction. In either case, you cannot tell what that
client was doing just before becoming idle, so once it's reached an idle state you have
limited ability to figure out how it got there.

Chapter 11

[307]

The second issue you're much less likely to run into, which is the negative runtime
shown in one of the rows in the preceding example. The PostgreSQL system
time functions that current_timestamp belongs to return the time of the current
transaction for the client asking for the information. If someone else starts a session
after yours, but before you run the query against pg_stat_activity, they can have
a transaction or query start after what your client believes to be the current time. It's
possible to get the true system time instead using the timeofday() function. Given
that this returns a string instead of a true timestamp that you can further manipulate,
it normally isn't worth the effort to avoid this rare situation. In most cases, you
should be more interested in long-running transactions instead of just started
ones anyway.

Locks
The MVCC model used in PostgreSQL makes locks less of an issue than in some
other databases. However, high performance applications still need to be careful
to minimize how often they take stronger locks, and performance tuning work will
regularly require looking for situations where locking behavior is a bottleneck.

The details of how locking works in the database is described extensively at
http://www.postgresql.org/docs/current/static/explicit-locking.html.

The other useful manual section is the description of the pg_locks view, which lets
you see all the active locks in the database, refer http://www.postgresql.org/
docs/current/static/view-pg-locks.html.

As there are far too many details involved in locking to cover all of them in this
chapter, consider those sections of the documentation required reading in addition
to what's here. This section will mainly present how to work with pg_locks and
examples of what sort of information you'll actually see in there. All of these are
locks generated by running the standard and select-only pgbench tests.

Virtual transactions
One bit that isn't really clear from the documentation is how the database internally
handles assignment of transaction identification numbers called transaction ids
or simply XIDs. And you can't easily decode the pg_locks information without
knowing some trivia here.

Database Activity and Statistics

[308]

Every statement in PostgreSQL executes within a transaction, either explicit or
implied. If you want a transaction to span multiple statements, you put it into
a transaction block using the BEGIN statement. Giving something an XID in
PostgreSQL has some overhead. For example, each one of them is assigned its
own space in the database commit logs, stored in the pg_clog directory.

As that involves several types of work including an eventual disk write; this is
somewhat expensive. And simple read-only statements like many SELECTs don't
really need a transaction ID anyway. Starting in PostgreSQL 8.3, an optimization was
added to avoid this overhead when it's not needed, using what's referred to inside
the code as "lazy XID allocation". Transactions are now assigned a real transaction
ID, what the pg_locks documentation calls a "permanent ID", only when they
modify a database row. Read-only transactions are never given one.

However, the transaction ID number is what's used to implement transactions
waiting on one another for a lock, the information shown in pg_locks. In order
to allow this, the lazy allocation scheme also introduced the concept of a virtual
transaction ID. These are allocated using a less permanent naming scheme, one
that doesn't involve writing the transaction information to disk.

As many applications have far more read-only SELECT statements than ones that
modify rows; in addition to reducing disk writes this optimization significantly
reduces the rate at which real transaction IDs are used up within the database.
The database has to do some extensive transaction ID wrap around cleanup
periodically, as described in Chapter 7, Routine Maintenance. Reducing the "burn rate"
of transaction IDs using lazy allocation, preferring virtual XIDs if you can avoid
allocating a real one, lowers how often that happens too.

With that background, this somewhat brief statement from the documentation is
worth highlighting:

Every transaction holds an exclusive lock on its virtual transaction ID for its entire
duration. If a permanent ID is assigned to the transaction (which normally happens
only if the transaction changes the state of the database), it also holds an exclusive
lock on its permanent transaction ID until it ends. When one transaction finds
it necessary to wait specifically for another transaction, it does so by attempting
to acquire share lock on the other transaction ID (either virtual or permanent ID
depending on the situation). That will succeed only when the other transaction
terminates and releases its locks.

Chapter 11

[309]

Understanding the way this mechanism for waiting on another transaction ID, either
permanent or virtual, works is critical to finding and resolving locking issues in an
application. And the way transactions wait for other transactions isn't always just
a simple pairing, even though it's displayed as such by the locks display. You can
actually end up with more of a tree structure instead, where transaction A is waiting
for B, while B is waiting for C.

Decoding lock information
The information provided by pg_locks is very basic. In order to understand what
it means in more real-world terms, you would want to match its data against several
system catalog tables, as well as the activity information for the query. Here's an
example showing how to relate this view against the most popular ones to join
it against:

SELECT

 locktype,

 virtualtransaction,

 transactionid,

 nspname,

 relname,

 mode,

 granted,

 cast(date_trunc('second',query_start) AS timestamp) AS query_start,

 substr(current_query,1,25) AS query

FROM

 pg_locks

 LEFT OUTER JOIN pg_class ON (pg_locks.relation = pg_class.oid)

 LEFT OUTER JOIN pg_namespace ON (pg_namespace.oid = pg_class.
relnamespace),

 pg_stat_activity

WHERE

 NOT pg_locks.pid=pg_backend_pid() AND

 pg_locks.pid=pg_stat_activity.procpid;

Database Activity and Statistics

[310]

Note that the way this query discovers table relation names will only produce results
for tables in the currently connected database; they will be blank for locks held
against tables in other databases.

You might want to turn the query or transaction start time into a time interval
relative to now, similarly to how runtime is computed in the pg_stat_activity
example in the previous section.

There are two extremely common entries you'll see in pg_locks. Queries that are
accessing a table will obtain a shared lock on that relation, which prevents anyone
else from obtaining an exclusive lock on it:

locktype | relation

virtualtransaction | 2/2478876

transactionid |

nspname | public

relname | pgbench_accounts

mode | AccessShareLock

granted | t

query_start | 2010-04-11 22:44:47

query | SELECT abalance FROM pgbe

And queries will lock their own virtual transaction ids, which is what queries that
haven't needed to a get a real transaction id yet, are assigned:

locktype | virtualxid

virtualtransaction | 2/2478876

transactionid |

nspname |

relname |

mode | ExclusiveLock

granted | t

query_start | 2010-04-11 22:44:47

query | SELECT abalance FROM pgbe

When you run a more complicated query that needs a real transaction ID, like an
UPDATE, it will be assigned one that it then acquires an exclusive lock on (as the
owner of that transaction id) like the following:

locktype | transactionid

virtualtransaction | 2/2528843

transactionid | 328491

Chapter 11

[311]

nspname |

relname |

mode | ExclusiveLock

granted | t

query_start | 2010-04-11 22:47:19

query | UPDATE pgbench_branches S

If another query has to wait for that transaction to end, it would do so by requesting
a shared lock on it; one that was then granted after the transaction finished looks like
the following:

locktype | transactionid

virtualtransaction | 1/1165014

transactionid | 371417

nspname |

relname |

mode | ShareLock

granted | t

query_start | 2010-04-11 22:49:09

query | UPDATE pgbench_branches S

In order to actually change a row, statements like UPDATE acquire an exclusive lock
on the row they are changing:

locktype | relation

virtualtransaction | 1/1165014

transactionid |

nspname | public

relname | pgbench_tellers

mode | RowExclusiveLock

granted | t

query_start | 2010-04-11 22:49:09

query | UPDATE pgbench_branches S

And then a lock will be acquired on the tuple (the actual data in the row); the
following is what that looks like before the lock is acquired, showing an example
of an ungranted lock that an application is waiting for:

locktype | tuple

virtualtransaction | 4/2526095

transactionid |

Database Activity and Statistics

[312]

nspname | public

relname | pgbench_branches

mode | ExclusiveLock

granted | f

query_start | 2010-04-11 22:47:19

query | UPDATE pgbench_branches S

Monitoring your application to see what type of locks it acquires, what it acquires
them on, and what it ends up waiting on is a great way to get a feel for how the
locking mechanism described in the PostgreSQL manual ends up working out
in practice.

Transaction lock waits
Locking performance issues will often be evident by an excess of clients that are
waiting for a lock to be granted. If you join two pg_locks entries together with
a matching pair of pg_stat_activity ones, it's possible to find out various
information about both the locker process that currently holds the lock, and the
locked one stuck waiting for it:

SELECT

 locked.pid AS locked_pid,

 locker.pid AS locker_pid,

 locked_act.usename AS locked_user,

 locker_act.usename AS locker_user,

 locked.virtualtransaction,

 locked.transactionid,

 locked.locktype

FROM

 pg_locks locked,

 pg_locks locker,

 pg_stat_activity locked_act,

 pg_stat_activity locker_act

WHERE

 locker.granted=true AND

 locked.granted=false AND

 locked.pid=locked_act.procpid AND

 locker.pid=locker_act.procpid AND

 (locked.virtualtransaction=locker.virtualtransaction OR

 locked.transactionid=locker.transactionid);

Chapter 11

[313]

This variation looks for and provides additional information about transaction ID
lock waits such as the following:

locked_pid | 11578

locker_pid | 11578

locked_user | postgres

locker_user | postgres

virtualtransaction | 2/2580206

transactionid | 534343

locktype | transactionid

These will also show up for virtual transactions, as mentioned before:

locked_pid | 11580

locker_pid | 11580

locked_user | postgres

locker_user | postgres

virtualtransaction | 4/2562729

transactionid |

locktype | tuple

The preceding examples aren't necessarily representative of common situations;
note that the pid is actually the same in each case, and this lock sequence is due to
how the pgbench transactions execute. You will likely want to display more of the
information available when analyzing locks like this, such as showing enough of
the query text for each activity row to see what is happening.

Table lock waits
Clients waiting to acquire a lock on an entire table is something you should aim to
avoid. The following will show you when this is happening:

SELECT

 locked.pid AS locked_pid,

 locker.pid AS locker_pid,

 locked_act.usename AS locked_user,

 locker_act.usename AS locker_user,

 locked.virtualtransaction,

 locked.transactionid,

 relname

FROM

 pg_locks locked

Database Activity and Statistics

[314]

 LEFT OUTER JOIN pg_class ON (locked.relation = pg_class.oid),

 pg_locks locker,

 pg_stat_activity locked_act,

 pg_stat_activity locker_act

WHERE

 locker.granted=true AND

 locked.granted=false AND

 locked.pid=locked_act.procpid AND

 locker.pid=locker_act.procpid AND

 locked.relation=locker.relation;

Output from this query looks similar to the previous transaction id examples:

locked_pid | 12474

locker_pid | 12247

locked_user | postgres

locker_user | postgres

virtualtransaction | 2/2588881

transactionid |

relname | pgbench_accounts

You really shouldn't see this form of lock pop up under normal circumstances—this
one was generated by doing an explicit LOCK on a table and then trying to query
against it in another session.

Logging lock information
At this point you'd probably like a more automatic way to log locking problems
than to just watch pg_locks all day. There are a pair of database parameters that
allow doing that, as a by-product of sorts of how the database defends itself against
deadlock problems.

Deadlocks
Consider the following sequence:

1. Process 1 acquires a lock on object A
2. Process 2 acquires a lock on object B.
3. Process 2 tries to acquire a lock on object A. It's now waiting for Process 1

to finish.
4. Process 1 tries to acquire a lock on object B.

Chapter 11

[315]

At this point the two processes are now in what's called deadlock: each is trying to
obtain a lock on something owned by the other. They both will wait on each other
forever if left in this state. One of them has to give up and release the locks they
already have.

To search for this situation and resolve it, PostgreSQL doesn't wait forever for a
lock. Instead, it only waits an amount of time determined by the deadlock_timeout
parameter. After waiting that long, any process trying to acquire a lock will run the
deadlock detector algorithm. This logic inside the database looks for deadlock in the
form of locks that lead in a circle, either a simple pair or a more complicated chain. If
one is found, the process running the deadlock detector, the one waiting for the lock
(not the one who already has it), aborts. If it turns out there is no deadlock, and it's
just taking a long time to acquire the lock, the process then goes back to sleep and
starts over.

When deadlock occurs, this is always logged. If you turn on the log_lock_waits
parameter in the database, each time the deadlock detector runs and determines
there's no deadlock, information about what it's waiting for is also written to the
database. You can use this to figure out which locks are taking a long time to acquire
in your application.

The default lock wait time here in the form of deadlock_timeout is one second. This
default is reasonable for deadlock detection. If you want to find and log lock waits,
you may want to reduce that timeout, so that you can find smaller ones. There is
some additional overhead from that change, in that you'll be running the deadlock
detector code more frequently too. This is why the lock timeout doesn't default
to something smaller.

Disk usage
The amount of disk space used by tables and indexes in the database is informative
in two major ways. As many database operations have execution times proportional
to the size of the table, tracking size over time can help you predict how query time
is going to increase in the future. And as described in the database maintenance
chapter, tables or indexes whose size change in unexpected ways can indicate a
problem with the vacuum strategy being employed.

The basic way to find out how much disk space is used by a table or index is to run
pg_relation_size() on it. This is often combined with pg_size_pretty(), which
will provide a human-readable version of the size.

Other useful size queries include pg_column_size() and
pg_database_size().

Database Activity and Statistics

[316]

A quick example of how to query this information across all the tables in the current
database is as follows:

SELECT

 nspname,

 relname,

 pg_size_pretty(pg_relation_size(C.oid)) AS "size"

FROM pg_class C

LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)

WHERE nspname NOT IN ('pg_catalog', 'information_schema')

ORDER BY pg_relation_size(C.oid) DESC

LIMIT 20;

On a pgbench database with a lot of work done on it, and thus a large history table,
output from this might look like the following:

 nspname | relname | size

----------+-----------------------+--------

 public | pgbench_accounts | 13 MB

 public | pgbench_history | 12 MB

 public | pgbench_accounts_pkey | 1768 kB

 public | pgbench_branches | 224 kB

 pg_toast | pg_toast_2618 | 208 kB

 public | pgbench_tellers | 32 kB

This shows the main issue with this simple query: wide columns that have been
moved out of the main table into a TOAST relation are broken out as their own
entries. There is a pg_total_relation_size() function available too, but it also
includes indexes.

As of PostgreSQL 9.0, there is a function named pg_table_size() that includes all
of the TOAST information in its total, but not the indexes. And pg_indexes_size()
gives a total size for all the indexes of this table. The actual components break down
like the following:

pg_total_relation_size = pg_table_size + pg_indexes_size
pg_table_size = pg_relation_size + toast table + toast indexes + FSM

Starting with PostgreSQL 8.4 the free space map is stored in a separate "relation fork"
that takes up some amount of disk space; in earlier versions that isn't a component
to the size you need to worry about. There is a way to ask pg_relation_size() for
the FSM size, but this is ignored in the examples here, as something not particularly
useful to track.

Chapter 11

[317]

This query uses the new functions to display the TOAST and index sizes:

SELECT

 nspname,

 relname,

 relkind as "type",

 pg_size_pretty(pg_table_size(C.oid)) AS size,

 pg_size_pretty(pg_indexes_size(C.oid)) AS idxsize,

 pg_size_pretty(pg_total_relation_size(C.oid)) as "total"

FROM pg_class C

LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)

WHERE nspname NOT IN ('pg_catalog', 'information_schema') AND

 nspname !~ '^pg_toast' AND

 relkind IN ('r','i')

ORDER BY pg_total_relation_size(C.oid) DESC

LIMIT 20;

In earlier versions, you can compute the TOAST total or the index total manually:

SELECT

 nspname,

 C.relname,

 C.relkind as "type",

 pg_size_pretty(pg_relation_size(C.oid)) AS size,

 pg_size_pretty(

 CASE when C.reltoastrelid > 0 THEN pg_relation_size(C.reltoastrelid)
ELSE 0 END +

 CASE when T.reltoastidxid > 0 THEN pg_relation_size(T.reltoastidxid)
ELSE 0 END

) AS toast,

 pg_size_pretty(cast(

 (SELECT sum(pg_relation_size(I.indexrelid))

 FROM pg_index I WHERE I.indrelid = C.oid)

 AS int8)) AS idxsize,

 pg_size_pretty(pg_total_relation_size(C.oid)) as "total"

 FROM pg_class C

LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)

LEFT OUTER JOIN pg_class T ON (C.reltoastrelid=T.oid)

Database Activity and Statistics

[318]

WHERE nspname NOT IN ('pg_catalog', 'information_schema') AND

 nspname !~ '^pg_toast' AND

 C.relkind IN ('r','i')

ORDER BY pg_total_relation_size(C.oid) DESC

LIMIT 20;

As this gives the same results as the 9.0 specific version, if you have to support older
versions too this is the preferred way to compute disk space use.

Buffer, background writer, and
checkpoint activity
Monitoring gross activity in the database buffer cache was very difficult until
PostgreSQL 8.3, where the pg_stat_bgwriter view was introduced. This allows
tracking the general flow of every data page buffer that goes in or out of the cache,
along with statistics about the related checkpoint process responsible for much of
that. Some questions you can answer with this data include the following:

What percentage of the time are checkpoints being requested based on
activity instead of time passing?
How much data does the average checkpoint write?
What percentage of the data being written out happens from checkpoints and
backends, respectively?

It's possible to compute these numbers easily enough right from the view. The only
additional piece needed is the block size needed to hold a single buffer, available
as one of the internal settings exposed in pg_settings or current_setting as the
block_size parameter:

pgbench=#

SELECT

 (100 * checkpoints_req) / (checkpoints_timed + checkpoints_req)

 AS checkpoints_req_pct,

 pg_size_pretty(buffers_checkpoint * block_size / (checkpoints_timed +
checkpoints_req))

 AS avg_checkpoint_write,

 pg_size_pretty(block_size * (buffers_checkpoint + buffers_clean +
buffers_backend)) AS total_written,

 100 * buffers_checkpoint / (buffers_checkpoint + buffers_clean +
buffers_backend) AS checkpoint_write_pct,

 100 * buffers_backend / (buffers_checkpoint + buffers_clean + buffers_

•

•

•

Chapter 11

[319]

backend) AS backend_write_pct,

 *

FROM pg_stat_bgwriter,(SELECT cast(current_setting('block_size') AS
integer) AS block_size) AS bs;

-[RECORD 1]--------+--------

checkpoints_req_pct | 8

avg_checkpoint_write | 2829 kB

total_written | 24 GB

checkpoint_write_pct | 11

backend_write_pct | 88

checkpoints_timed | 965

checkpoints_req | 87

buffers_checkpoint | 371986

buffers_clean | 2138

maxwritten_clean | 6

buffers_backend | 2750221

buffers_alloc | 582924

block_size | 8192

You can see that only 8% of the checkpoints executed are required ones, which
suggests the system has not been active enough to run out of WAL segments before
hitting the checkpoint_timeout value. The average checkpoint write is 2.8 MB, a
fairly small amount. A full 88% of the buffers written out were handled by backend
writes, which suggests this system isn't configured very well—more should go out
using checkpoints. It's like this because shared_buffers is tiny on this system.

A look at the total amount written shows you where these cumulative totals start to
break down. 24 GB sounds like a lot, but without a time period to reference it over
you can't draw any conclusions about it. Is that 24 GB per hour? Per month? There's
no way to tell.

Saving pg_stat_bgwriter snapshots
In order for this data to really be interesting, you need to save periodic snapshots of
it with an associated timestamp. It's easy to create a table for that purpose and put a
first snapshot into it:

pgbench=# CREATE TABLE pg_stat_bgwriter_snapshot AS SELECT current_
timestamp,* FROM pg_stat_bgwriter;

SELECT 1

pgbench=# INSERT INTO pg_stat_bgwriter_snapshot (SELECT current_
timestamp,* FROM pg_stat_bgwriter);

Database Activity and Statistics

[320]

Now you can wait until some time has passed, with a representative chunk of
activity; at least an hour is recommended, preferably a day. Insert a second snapshot
into that table:

pgbench=# INSERT INTO pg_stat_bgwriter_snapshot (SELECT current_
timestamp,* FROM pg_stat_bgwriter);

And now it's possible to get a difference both in values and in elapsed time between
these two. You might even add the above INSERT to a query scheduling regime using
tools like cron or pgAgent. Having two snapshots lets you compute averages in
units like bytes/second over time. The following giant query shows a full range
of interesting statistics you can derive:

SELECT

 cast(date_trunc('minute',start) AS timestamp) AS start,

 date_trunc('second',elapsed) AS elapsed,

 date_trunc('second',elapsed / (checkpoints_timed + checkpoints_req)) AS
avg_checkpoint_interval,

 (100 * checkpoints_req) / (checkpoints_timed + checkpoints_req)

 AS checkpoints_req_pct,

 100 * buffers_checkpoint / (buffers_checkpoint + buffers_clean +
buffers_backend) AS checkpoint_write_pct,

 100 * buffers_backend / (buffers_checkpoint + buffers_clean + buffers_
backend) AS backend_write_pct,

 pg_size_pretty(buffers_checkpoint * block_size / (checkpoints_timed +
checkpoints_req))

 AS avg_checkpoint_write,

 pg_size_pretty(cast(block_size * (buffers_checkpoint + buffers_clean +
buffers_backend) / extract(epoch FROM elapsed) AS int8)) AS written_per_
sec,

 pg_size_pretty(cast(block_size * (buffers_alloc) / extract(epoch FROM
elapsed) AS int8)) AS alloc_per_sec

FROM

(

SELECT

 one.now AS start,

 two.now - one.now AS elapsed,

 two.checkpoints_timed - one.checkpoints_timed AS checkpoints_timed,

Chapter 11

[321]

 two.checkpoints_req - one.checkpoints_req AS checkpoints_req,

 two.buffers_checkpoint - one.buffers_checkpoint AS buffers_checkpoint,

 two.buffers_clean - one.buffers_clean AS buffers_clean,

 two.maxwritten_clean - one.maxwritten_clean AS maxwritten_clean,

 two.buffers_backend - one.buffers_backend AS buffers_backend,

 two.buffers_alloc - one.buffers_alloc AS buffers_alloc,

 (SELECT cast(current_setting('block_size') AS integer)) AS block_size

FROM pg_stat_bgwriter_snapshot one

 INNER JOIN pg_stat_bgwriter_snapshot two

 ON two.now > one.now

) bgwriter_diff

WHERE (checkpoints_timed + checkpoints_req) > 0;

The following is what the output from the preceding code would look like during a
relatively busy period. This is from a laptop that was running the standard pgbench
test for a bit during the period monitored:

start | 2010-04-09 19:52:00

elapsed | 00:17:54

avg_checkpoint_interval | 00:03:34

checkpoints_req_pct | 80

checkpoint_write_pct | 85

backend_write_pct | 14

avg_checkpoint_write | 17 MB

written_per_sec | 94 kB

alloc_per_sec | 13 kB

Here 80% of the checkpoints were required, because the system ran out of WAL
segments, and that matches an average time between checkpoints of around 3.5
minutes—pretty frequent. Luckily, most buffers are written out; 85% were written by
checkpoints, which is good because a checkpoint write is the most efficient type to
have. Each checkpoint average is 17 MB written out. But if you sum all of the write
activity, it's only streaming an average of 94 kB/s out to disk, which is still a pretty
low amount. On the read side, 13 kB/s of buffers were allocated to satisfy queries.
This balance suggests that for the most part, the majority of buffer churn was
things persistently saved in cache, being repeatedly written out to disk, with little
corresponding reading going on. That's typical for the standard pgbench test used to
generate the load here, because it's always dirtying the same blocks in the tellers and
branches tables in particular.

Database Activity and Statistics

[322]

A snapshot for the 46 minutes following this, which didn't have any test running,
shows what a mostly idle period looks like:

start | 2010-04-09 20:10:00

elapsed | 00:46:26

avg_checkpoint_interval | 00:05:09

checkpoints_req_pct | 0

checkpoint_write_pct | 100

backend_write_pct | 0

avg_checkpoint_write | 910 bytes

written_per_sec | 3 bytes

alloc_per_sec | 0 bytes

Note how the checkpoint interval matches the default checkpoint_timeout of 5
minutes, with none of the checkpoints being required—they're all time-based ones.
And the average read and allocation rates are slowed to almost nothing.

The alloc_per_second rate is not exactly the same as the read rate from the
OS buffer cache, but it is an interesting number suggesting how often internal
buffers are being reused, you can combine a look at actual OS reads with. The
written_per_sec number is a complete average for writes to the database tables
and indexes on disk. This should very closely match averages computed with OS
level tools. You do need to recall that other sources for database writes include the
WAL, the transaction commit logs, and temporary files used for sorting. This lets
you quantify one component of that mixed write set accurately.

Tuning using background writer statistics
Tuning database parameters related to buffering and checkpoints in PostgreSQL is
often considered more magic than science. With regular snapshots of the back
ground writer statistics, it's possible to bring a more formal iterative method
to tuning adjustments.

1. Start collecting regular pg_stat_bgwriter snapshots so you have a
performance baseline. Every time you make a change, make sure to generate
a new snapshot point after starting the server with the new values.

2. Increase checkpoint_segments until most checkpoints are time-driven,
instead of requested because the segment threshold has been crossed.
Eventually, 90% or more should be time-based, and the avg_checkpoint_
interval figure should be close to 5 minutes (or whatever you've set
checkpoint_timeout to).

Chapter 11

[323]

3. Increase shared_buffers by a large amount—25% or more. If your current
value is less than 1/6th of the total RAM in a dedicated server, try a value
of at least that amount. Compare a snapshot after that change with the one
from before.

4. When your system is using the larger buffer space usefully, the percentage
of buffers written at checkpoint time (rather than by backends or the
background writer) should increase, and the total I/O written_per_sec
figure should drop. If the last increase in shared_buffers helped by those
standards, return to step 3, continuing to iterate with size increases until
improvements level off.

5. If the values didn't change significantly, your original shared_buffers
value was already big enough for this workload. You can either keep the
new configuration or revert to the older one; in either case you're done with
increasing its size.

6. You should now have checkpoint_segments and shared_buffers set
to useful sizes. If a large percentage of writes are coming from buffers_
checkpoint, and the average I/O figure shown in written_per_sec seems
high (or the system is obviously slow with excess writes), consider increasing
checkpoint_timeout to further spread the checkpoints out. If you do that,
start over again—you probably have to revisit checkpoint_segments again.

The key to this method is to recognize that any change that shifts your system
towards doing more writes as a part of a widely spread checkpoint is an
improvement over writing the same data from a backend or the background
writer. Your buffer cache should be filled with data that stays around because it's
used regularly, accumulating a high usage count. You might even observe that
pg_buffercache is used, although that's not essential to this tuning technique. The
ideal situation is one where anything that's modified regularly is only written out
once per checkpoint, not each time it's dirtied. That's the most efficient approach, and
improvements in that direction should correspondingly lower total writes too.

There is one main downside to getting too aggressive about increasing
shared_buffers and the checkpoint parameters. When checkpoints end, they have
to force all the writes done during the checkpoint out to disk. In current PostgreSQL
versions, this is done as a fairly tight operation. If the operating system didn't actually
write those buffers out in advance, you can cause a checkpoint I/O spike proportional
to how much data the OS has cached when the checkpoint ends. That is known to be a
problem on Linux systems with large amounts of memory; they can get stuck having
gigabytes to synchronize to disk.

Database Activity and Statistics

[324]

If you run into this problem, you may have to tune in the opposite direction—less
checkpoint writes, more backend and background writer ones—in order to
reduce these spikes, and the application side latency they introduce. I have some
improvements to this area planned for PostgreSQL 9.1, initially aimed at helping
Linux systems using the XFS and ext4 filesystems sync write out more smoothly.
It's impossible to do a good job here with ext3 because of the limitations in how
that filesystem handles cache synchronization, since it will just write out the whole
filesystem cache once the first sync request arrives.

If you're going to try and tune your system as described in this section, make sure you
turn on log_checkpoints and monitor what that's writing to the database logs too.
If you see the "sync" time listed at the end of the checkpoint rise, you may be running
into this problem. If so, reduce the buffer cache and/or make checkpoints more
frequent to reduce its impact, even if that makes the buffer cache statistics worse.

Summary
It seems fitting that a database filled with data can also produce its own set of data,
by monitoring its internal activity and statistics. While in many cases it's more
appropriate to set up monitoring using pre-built external tools, as covered in the
next chapter, knowing how to directly query and derive interesting values from the
database's activity and statistics collector can prove valuable. And when it comes
to troubleshooting system performance issues, monitoring activity and locking
data yourself is a must.

The database statistics are exposed using views you can either use all of, or
reinterpret by joining with additional system catalog and activity data.
Most statistics are cumulative values. You'll either need to track how they
change over time with an external tool, or regularly reset the totals.
Particularly valuable statistics to monitor include table/index caching and
query index usage statistics.
Live activity snapshots can be used on their own, or combined with other
process based monitoring, to correlate what's happening inside the database
with the rest of the system.
The locking data provided by the database is extensive but very low-level.
You'll need to write your own queries to make sense of what's provided,
to search for locking issues in database applications.
Tracking disk space used is valuable for noting how tables change over time,
both for finding disk usage problems and for trending predictions.
The statistics provided by the background writer can be used to tune critical
checkpoint and buffer cache parameters in a systematic way.

•

•

•

•

•

•

•

Monitoring and Trending
Performance of your database server is directly tied to how well the underlying
operating system is working, and there the performance is driven by the hardware
you're using. To fit all of these pieces together—hardware performance, operating
system performance, and database performance—you need a good monitoring
system. Once you're capturing all the right data, software that graphs that is vital to
tracking general trends in your server's performance. This can help you predict when
you're reaching the limits of your systems capacity, and see whether the changes
made are effective improvements or not.

UNIX monitoring tools
The simple performance tools on a UNIX-derived system are straightforward
to use, and it's easy to show examples of good and bad behavior, the best way to
teach how those tools are useful for monitoring. Note that the general background
here, and the examples of what to look for, are still relevant even on a Window
system. The underlying hardware, the way the operating systems work, and the
resulting performance concepts are no different. There's a table in a later section
of this chapter that shows how to translate between the UNIX and Windows
monitoring terminology.

Sample setup
The server used here is the same one described in the pgbench chapter. For these
examples, initially a small pgbench database was created with a scale of 100
(one that easily fits into RAM), and the standard mixed test was run:

$ pgbench -i -s 100 pgbench

$ pgbench -j 4 -c 8 -T 300 pgbench

Monitoring and Trending

[326]

This gave approximately 2000 transactions/second. Larger tests with lower TPS
values will appear below as well.

If you're using a PostgreSQL earlier than 9.0, you'll have to leave out
the -j 4 part of the preceding code to try this yourself, and with the
pgbench examples shown later. Versions before 8.4 won't handle -T
300 either, and you'll have to find a number of substitute transactions
to pass using -t in order to make the test last for a while.

The sample server has the following as its disk layout for the database directories:

pg_xlog: /dev/sdf1
data: /dev/md0. Linux software RAID 0; individual drives are
sdc1, sdd1, sde1

You'll need this disk layout background to follow the iostat examples shown next.

vmstat
If you post a question to the pgsql-performance mailing list that suggests your
system might be overloaded, the first thing you'll be asked for is a snapshot of
vmstat data. It's the most valuable quick summary of what your system is doing.
Because it displays a full system snapshot per line, it's even possible to extract
short-term trends from staring at a screen full of data.

Since the output from vmstat is a bit too wide to fit on the page at once, it's broken
up into a left and right side for now; later examples will include just the interesting
columns. Here's the left side showing a few seconds of heavy memory-limited
pgbench work shown next:

$ vmstat 1

procs -----------memory------------- ---swap--

 r b swpd free buff cache si so

 8 0 0 2542248 386604 3999148 0 0

 3 0 0 2517448 386668 4023252 0 0

 1 0 0 2494880 386732 4043064 0 0

 7 1 0 2476404 386792 4060776 0 0

•

•

Chapter 12

[327]

The explanations for these columns in the manual for vmstat are:

r: The number of processes waiting for run time.

b: The number of processes in uninterruptible sleep.

swpd: The amount of virtual memory used.

free: The amount of idle memory.

buff: The amount of memory used as buffers.

cache: The amount of memory used as cache.

si: Amount of memory swapped in from disk (/s).

so: Amount of memory swapped to disk (/s).

Next, you'll see some examples of how to interpret the procs data, and what it looks
like when the server runs low on RAM. One thing not shown here is what happens
when the server starts using swap. On a database server, if you're using swap at
all, you've probably made a configuration error, and should reduce memory usage.
Therefore, the main thing to monitor the swap figure, is that any value other than
zero for si or so is a likely problem. On Linux, the swappiness setting (covered in
the Chapter 4, Disk Setup) can have a major impact on how this works.

The part of the vmstat data that's much more interesting for database performance is
there on the right side; these are the other half of the four lines seen previously:

$ vmstat 1

----io---- --system--- -----cpu------

 bi bo in cs us sy id wa st

 24 38024 7975 73394 40 18 34 7 0

 48 57652 11701 93110 43 16 34 6 0

 36 75932 11936 86932 44 15 34 7 0

 4 96628 12423 77317 39 17 37 6 0

Monitoring and Trending

[328]

Here's what the manual page has to say about the preceding code:

bi: Blocks received from a block device (blocks/s).

bo: Blocks sent to a block device (blocks/s).

in: The number of interrupts per second, including the clock.

cs: The number of context switches per second.

us: CPU Time spent running non-kernel code. (user time, including nice time)

sy: CPU Time spent running kernel code. (system time)

id: CPU Time spent idle.

wa: CPU Time spent waiting for IO.

st: CPU Time stolen from a virtual machine.

The various "CPU Time" figures are all given in percentages. By default, the Linux
vmstat being used here is counting blocks in units of 1024 bytes, which means
that the numbers given are in KB/s. Therefore the first bo figure, 38024 means
approximately 38 MB/s of disk writes happened during that time. This may not be
true on non-Linux systems; see the iostat section in a while for more background
about block sizes.

All of the vmstat examples here are produced using a one second time interval,
the parameter passed on the command line in the preceding examples. All of the
counts in its data (as opposed to the percentages) are averages per second over the
given time period, so the interpretation isn't impacted by the collection period. It
just changes the resolution of the data you see.

The other thing to note about vmstat and iostat is that when you run them, the
first line they output is a long-term one summarizing all activity since the server
was started. The snapshots of a small unit of time start on the second line printed.
If you're writing scripts to collect this data and process it, typically you need to be
careful to always throw away the first line.

Chapter 12

[329]

As a first example of what bad data looks like, here's a snapshot from the preceding
pgbench run showing a period where the system became less responsive for about
two seconds:

procs ----io---- --system--- -----cpu------

 r b bi bo in cs us sy id wa st

 2 2 4 93448 11747 84051 44 19 32 5 0

 0 3 0 54156 8888 47518 23 10 53 14 0

 0 2 0 6944 1259 1322 1 0 72 27 0

 0 2 0 12168 2025 2422 0 0 65 35 0

 8 0 0 26916 5090 41152 23 9 47 21 0

 2 0 4 57960 9802 54723 31 12 46 11 0

Note the dramatic drop in context switches (cs) for the middle two entries there.
Since most completed work executed by the server and the pgbench client itself
involves a context switch, those low entries represent a period where almost nothing
happened. Instead of tens of thousands of things happening during that second,
there were only a few thousand. Also note how that corresponds with a jump in the
waiting for I/O (wa) category, and the CPUs becoming less active. All these things
are characteristic of what a bad performing section of time looks like, when the
system is at a bottleneck waiting for the disk drive(s).

iostat
The data vmstat gives is a total across all devices on the system. If you want totals
per disk device instead, you need to use iostat for that.

On Linux, iostat defaults to slightly different behavior than vmstat. When it uses
"block", it means a 512 byte chunk of data, not the 1024 bytes chunk vmstat uses.
You can switch iostat to using kilobytes instead using iostat -k, or you can
just divide all the figures by two in order to get them on the same scale. Here's an
example of the same data shown both ways:

$ iostat

Device tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sda1 0.07 3.29 0.24 1579784 115560

$ iostat -k

Device tps kB_read/s kB_wrtn/s kB_read kB_wrtn

sda1 0.07 1.64 0.12 789892 57780

Monitoring and Trending

[330]

Since not all UNIX versions will have the kilobyte option available, the examples
here all use the default 512 byte blocks, and accordingly halve the block figures
to interpret using kilobyte units.

You'll likely find that you need to average iostat data over a slightly longer period
of time than vmstat data. A single second of vmstat data is a summary of all the
disks on the system. A PostgreSQL database goes through several common phases:

Just after a checkpoint: heavy full-page writes to WAL, fewer writes to
database disks because there are fewer dirty buffer evictions.
Between checkpoints (the previous one finished and the most commonly
used buffers have had full pages written): most are an even mix of WAL
and database writes.
Checkpoint in progress: Small to moderate WAL writes; increasingly heavy
database writes as checkpoint data is written and starts flowing to disk.
Checkpoint sync phase: Minimal WAL writes because fewer full page writes
are likely happening; heavy writes to database disks as all data is flushed out
of the OS cache.

If you are looking at the vmstat data, or if you don't have the pg_xlog WAL data
broken out onto a separate disk, you can't see the balance of the data vs. WAL writes
change; you just see a total. But if you're grabbing really short iostat snapshots,
you're likely to see writes bounce between the WAL and database disks, with the
exact pattern depending on where in the checkpoint cycle you're at. You need to
combine a few seconds of data (5 seconds is used for these examples) in order to
have both types of writes be usefully averaged out:

$ iostat 5

avg-cpu: %user %nice %system %iowait %steal %idle

 42.69 0.00 18.07 6.69 0.30 32.25

Device tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sda 0.00 0.00 0.00 0 0

sda1 0.00 0.00 0.00 0 0

sdc 80.80 0.00 1286.40 0 6432

sdc1 80.80 0.00 1286.40 0 6432

sdd 77.80 0.00 1251.20 0 6256

sdd1 77.80 0.00 1251.20 0 6256

sde 69.40 0.00 1086.40 0 5432

sde1 69.40 0.00 1086.40 0 5432

•

•

•

•

Chapter 12

[331]

sdf 2348.20 0.00 88262.40 0 441312

sdf1 2348.20 0.00 88262.40 0 441312

md0 311.40 0.00 2491.20 0 12456

You can see that much of the valuable information from vmstat, such as the CPU
statistics, also appears here. But with so much more data here, it's much harder to
track trends on the console with this tool than with vmstat.

Since all of the activity relates to the single partition on these disks, there's a lot
of redundant data in here. You should also note that many of the statistics for the
software RAID volume used here are not very interesting—you have to look at
the underlying physical disk devices instead. If you're using hardware RAID, that
particular problem will go away, but you won't have any easy way to get actual
disk performance information out of that abstraction layer either; you'll just see
the summary for the whole logical RAID device. The following examples eliminate
all the redundant lines, and place the md0 array device between its individual
components and the device the WAL is on (sdf1), for easier readability.

iotop for Linux
It's also possible on Linux to get per-process I/O statistics, so you can see exactly
who is reading and writing heavily, using a program named iotop. This data
isn't available in mainstream Linux until kernel 2.6.20, and the iotop program
requires Python 2.5 too. RedHat RHEL5 doesn't meet either requirement. RedHat
has been working on getting the I/O statistics back ported to their mainstream 2.6.18
kernel and working through the Python issues too. By RHEL 5.7, it may be fully
available; refer https://bugzilla.redhat.com/show_bug.cgi?id=557062
to track their progress.

If you're running on a system with a more recent kernel, as may be the case for
Debian or Ubuntu users, make sure to try iotop out once you've seen heavy I/O
wait on a system. It's extremely useful at determining where the reads and writes
causing that are coming from.

It's possible to collect similar statistics from older kernels, a topic introduced at
http://www.xaprb.com/blog/2009/08/23/how-to-find-per-process-io-
statistics-on-linux/, and the blktrace utility can be used to profile disk I/O as
well. Both of these are more complicated tools to use than the simple iotop program.

Monitoring and Trending

[332]

Examples of good performance
When busy but not overloaded, iostat data for this system looks like the following:

$ iostat 5

avg-cpu: %user %nice %system %iowait %steal %idle

 18.54 0.00 9.45 23.49 0.15 48.38

Device tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sdc1 1068.80 0.00 15740.80 0 78704

sdd1 1041.80 0.00 15459.20 0 77296

sde1 1028.00 0.00 15377.60 0 76888

md0 5969.20 0.00 47753.60 0 238768

sdf1 989.00 0.00 40449.60 0 202248

The %iowait figure of 23% is high enough to know the disks are busy, but not
completely saturated yet. This is showing 20 MB/s (40449.6 512-byte blocks per
second) being written to the WAL and 24 MB/s to the entire database disk array,
the latter of which is evenly split as almost 8 MB/s to each of the three drives.

Linux also features an extended iostat mode. This produces a large number of
derived statistics from the underlying data. Since that's too wide to display here, the
first example showing all of the data here has been transposed to swap the row for
columns and vice-versa:

$ iostat –x 5

 sdc1 sdd1 sde1 md0 sdf1

rrqm/s 0 0 0 0 0

wrqm/s 411.8 404.6 396.2 0 3975.4

r/s 0 0 0 0 0

w/s 438.6 442 444.2 2461.4 1229.8

rsec/s 0 0 0 0 0

wsec/s 6956.8 6966.4 6915.2 19691.2 41643.2

avgrq-sz 15.86 15.76 15.57 8 33.86

avgqu-sz 67.36 67.09 62.93 0 0.65

await 158.18 158.85 148.39 0 0.55

svctm 1.2 1.2 1.19 0 0.51

%util 52.8 52.88 53.04 0 63.04

Chapter 12

[333]

All of the values here with a "q" in them (most of what's listed on the following
bulleted line) represent figures related to the read or write queues on these devices.
Since the queue size doesn't correspond with any real-world figure you can
benchmark the device against, it's hard to do anything with that data. The number
of read and write requests is similarly useless in a database context. The following
fields of iostat -x data are therefore not that useful here:

rrqm/s, wrqm/s, r/s, w/s, avgrq-sz, avgqu-sz

It won't be discussed in detail. Trimming some of those out also lets the samples fit
onto the horizontal space available.

Solaris has a similar extended mode available using iostat -xc

This next example is similar to the iostat one given previously:

$ iostat –x 5

avg-cpu: %user %nice %system %iowait %steal %idle

 21.51 0.00 11.08 23.75 0.10 43.56

Device rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util

sdc1 0.00 6956.80 15.86 67.36 158.18 1.20 52.80

sdd1 0.00 6966.40 15.76 67.09 158.85 1.20 52.88

sde1 0.00 6915.20 15.57 62.93 148.39 1.19 53.04

md0 0.00 19691.20 8.00 0.00 0.00 0.00 0.00

sdf 0.00 41643.20 33.86 0.65 0.55 0.51 63.04

That's 21 MB/s written to the WAL and 20 MB/s to the database disks, about 7 MB/s
to each one. However, recall that the total disk read or write throughput available
depends heavily on how random the workload is, which is normally a hard thing to
estimate. The %util figure, which is by far the most valuable of the derived figures
shown here, gives you a rough idea of that by noting how congested the device is
to achieve that throughput. In this next example, there's minimal database I/O and
heavy WAL I/O, typical of the period just after a checkpoint:

$ iostat –x 5

avg-cpu: %user %nice %system %iowait %steal %idle

 49.35 0.00 22.00 3.80 0.25 24.60

Device rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util

sdc1 0.00 2649.10 15.01 0.76 4.31 0.06 1.04

•

Monitoring and Trending

[334]

sdd1 0.00 2895.01 14.95 0.90 4.64 0.06 1.12

sde1 0.00 2728.94 15.06 0.82 4.51 0.06 1.04

md0 0.00 8273.05 8.00 0.00 0.00 0.00 0.00

sdf1 0.00 103760.48 38.11 0.23 0.09 0.09 23.47

This is happily getting >50 MB/s out of the WAL volume but it's still only busy
23.5% of the time. This suggests writes to it are being cached by the disk controller
and written quite efficiently. One of the reasons to break out the WAL onto its
own disk is because it makes it so easy to monitor this balance between WAL and
database writes, and to determine if the WAL volume (which only gets sequential
writes normally) is keeping up. Since there are techniques to accelerate the WAL
writes at the expense of something else, such as switching to an unjournaled
filesystem, the %util figure can help you determine when the WAL is the system
bottleneck and therefore necessary to accelerate that way.

A final example of good performance involves the database disks. There are some
operations in PostgreSQL that can bypass writing to the WAL. For example, if you
start a transaction that creates a new table and does a COPY into it, as long as you
don't have PITR archiving turned on that data is not put through the WAL before
being written to disk. The idea is that if the server crashes, the whole transaction will
be rolled back anyway, which includes deleting the table data; therefore, whether it's
consistent or not at the block level doesn't matter.

Here is what the database disks are capable of when running such a COPY, which
essentially turns into sequential write I/O directly to the database:

$ iostat –x 5

avg-cpu: %user %nice %system %iowait %steal %idle

 16.39 0.00 6.85 12.84 0.00 63.92

Device rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util

sdc1 25.60 58710.40 249.09 27.22 115.43 1.19 28.08

sdd1 24.00 58716.80 249.11 27.76 117.71 1.20 28.24

sde1 1.60 58667.20 250.51 28.31 120.87 1.14 26.80

md0 51.20 176094.40 8.00 0.00 0.00 0.00 0.00

sdf1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Chapter 12

[335]

This is over 29 MB/s being written to each database disk, for a total of 88 MB/s to
the RAID 0 array, and even that isn't fully utilizing the disks, as shown by the %util
at about 28%. Given that this is a four-core server and the COPY is the only process
running, a %user of 16 means that about 64% of a single CPU is busy here. The CPU
and disks are likely waiting for each other a bit in this situation, and you might have
to improve both to significantly speed this up. This example is from a server with a
battery-backed RAID controller; without one, it's much easier to run into one of the
disk bottlenecks here before the CPU ones.

Final iostat hint: on some versions you can switch the output to use megabytes/
second as its units, which is often the easiest to read. The following syntax for
example, usually makes for a good summary on Linux systems:

$ iostat -x -m 5

Overloaded system samples
To get a more realistic workload, the next few samples use a much larger scale of
pgbench database (1000) and more clients (64):

$ pgbench -i -s 1000 pgbench

$ pgbench -j 4 -c 64 -T 300 pgbench

This gives about 400 TPS on this server. The following snapshot shows one type of
problem you can discover from the vmstat data:

$ vmstat 1

procs ----io---- --system--- -----cpu------

 r b bi bo in cs us sy id wa st

 3 62 4916 34296 11504 23871 8 6 0 85 0

 2 64 7132 35828 13247 32406 11 8 0 81 0

 4 63 6120 40756 11313 29722 35 7 0 58 0

 0 48 3896 13712 6953 19544 28 3 2 66 1

 0 12 400 25564 2222 3417 0 1 25 73 0

 0 5 44 3700 818 1020 0 0 39 61 0

 1 12 64 8364 1388 1773 6 0 44 50 0

 1 45 704 7204 2133 3883 23 1 3 73 0

 5 60 2912 26148 8677 15774 17 3 1 79 0

 0 62 2376 15900 5648 12084 3 2 0 95 0

Monitoring and Trending

[336]

As mentioned, the spots where the cs figures drop dramatically (while the system
was under heavy load) represent a drop in total system throughput. This example
is a bit different, because the wa actually drops too—the system is so overloaded
that it isn't even generating a full sized write load. This is typical of when the server
is so overloaded that it even stops servicing client work, typically because of lock
contention. You can see that from how all the user time has disappeared too. Also,
when in a functional state, you can see most of the 64 clients (as well as some other
database and system processes) in either the running or sleeping category. During
the worst cs entry here, a mere five of those client processes (the b column) got
any run time on the server during the one second interval. This profile is common
when the cache on a disk controller has completely filled up, and clients are all stuck
waiting for WAL data to flush to disk.

Sometimes the slowdown is purely I/O though, as in the following example:

$ iostat –x 5

avg-cpu: %user %nice %system %iowait %steal %idle

 5.21 0.00 2.80 91.74 0.25 0.00

Device rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util

sdc1 2625.60 2057.60 14.67 38.79 101.47 3.14 100.08

sdd1 2614.40 2000.00 14.90 57.96 162.95 3.23 100.08

sde1 2736.00 1963.20 14.64 48.50 135.26 3.12 100.00

md0 7916.80 7206.40 10.60 0.00 0.00 0.00 0.00

sdf1 0.00 22190.40 50.20 0.84 1.79 1.34 59.20

The first thing to notice here is that the %util figure is rounded badly so it looks like
over 100% in spots. That's a result of some sloppy accounting and computation, and
not anything to be worried about. Next, note that the WAL is only getting 11 MB/s
of writes to it. Meanwhile, the database disks are 100% utilized, but are actually
processing under 8 MB/s in total (an even mix of reads and writes). This is what it
looks like when the database has heavy random I/O. These underlying disks are only
capable of about 2 MB/s of true random I/O, and sure enough they aren't doing much
better than that even with a caching controller sitting in the middle to buffer and sort.
This is typical of the checkpoint sync phase, where a large amount of random I/O has
been pushed into the write cache and is now being forced out to disk.

To show some really unpleasant performance, now let's crank the scale up to 4000:

$ pgbench -i -s 4000 pgbench

$ pgbench -j 4 -c 64 -T 300 pgbench

Chapter 12

[337]

This managed 250 TPS, but with very intermittent processing. A particularly bad
period looks like the following:

$ vmstat 1

procs ----io---- --system--- -----cpu-------

 r b bi bo in cs us sy id wa st

 1 63 5444 9864 8576 18268 4 3 0 92 0

 0 42 4784 13916 7969 16716 4 2 3 90 0

 0 59 464 4704 1279 1695 0 0 25 75 0

 0 54 304 4736 1396 2147 0 0 25 74 0

 0 42 264 5000 1391 1796 0 0 10 90 0

 0 42 296 4756 1444 1996 1 0 10 89 0

 0 29 248 5112 1331 1720 0 0 25 75 0

 0 47 368 4696 1359 2113 0 0 23 76 0

 1 48 344 5352 1287 1875 0 0 0 100 0

 0 64 2692 12084 5604 9474 8 2 0 90 0

 1 63 5376 9944 8346 18003 4 3 20 74 0

 0 64 5404 10128 8890 18847 4 3 25 67 0

That's an 8 second long period of seriously degraded performance. Note the low cs
counts. The total procs figures drop below the number of clients, and that there's
no user time. These should be the familiar characteristics of all the clients getting
stuck waiting for something by now. Here, the cause is pretty obvious; wa is high the
whole time and even hits a full 100%, showing the server just can't keep up with the
disk I/O load here.

You might wonder what that disk load looks like through the extended iostat data;
here's a similar period shown next:

$ iostat –x 5

avg-cpu: %user %nice %system %iowait %steal %idle

 2.35 0.00 1.85 85.49 0.15 10.16

Device rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util

sdc1 2310.40 1169.60 14.63 39.85 147.59 4.21 100.00

sdd1 2326.40 1216.00 14.53 71.41 264.60 4.10 100.00

sde1 2438.40 1230.40 14.77 47.88 157.12 4.01 99.60

md0 7044.80 4820.80 11.12 0.00 0.00 0.00 0.00

sdf1 0.00 19040.00 70.31 4.20 15.31 2.10 56.88

Monitoring and Trending

[338]

Note how low the read/write rates are, while still having 100% utilization. This
shows another I/O load heavy on random reads and writes. Even without the Linux
specific iostat -x data, you could also tell that from the combination of extremely
high %iowait with low throughput:

$ iostat 5

avg-cpu: %user %nice %system %iowait %steal %idle

 1.35 0.00 0.55 88.99 0.10 9.02

Device tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sdc1 252.80 1236.80 2550.40 6184 12752

sdd1 268.80 1377.60 2611.20 6888 13056

sde1 264.40 1312.00 2622.40 6560 13112

md0 1234.20 3924.80 7784.00 19624 38920

sdf1 118.00 0.00 6380.80 0 31904

We know that on sequential I/O these disks are capable of much higher throughputs
than this. So when the server is at a %iowait of 89% but only managing to write less
than 4 MB/s to the database disks, it's sensible to conclude they are coping with a
mix of random read and write requests instead.

top
If you want a snapshot of what your server is actually doing right now, from the
operating system's perspective, top is the easy tool to run. By default, it will sort
the active processes by their CPU usage, and it's easy to sort other ways as well.

When looking at top's memory accounting (which is similar to what ps uses as well),
you'll find three memory totals given. Both the VIRT and SHR figures include shared
memory, and accordingly the total memory percentage shown for a PostgreSQL
processes is probably inflated by some amount. Basically, any memory touched by
the client backend from shared memory will get added to its total. The RES figure is
the more useful one to monitor for regular client processes.

The most useful top trick to know is the fact that PostgreSQL processes update
their process information based on what they're doing, essentially modifying what
command line they appear to have been started with. Whether this happens or not
depends on the update_process_title configuration parameter in the database.
Both top and ps are capable of displaying that information. On Linux, you can see it
by hitting the "C" key while top is running, or by running top -c. On FreeBSD top
-a does the same thing.

Chapter 12

[339]

It's also possible to run top in a batch mode, where it writes data for every single
process on the system out at some interval rather than just showing a screen full of
them. Returning to our example with a pgbench scale of 4000 and 64 clients, here's
how you might capture 10 seconds worth of top data at one second intervals to a file,
find all the postgres backends, and then pick out the first word of what they're doing:

$ top -c -b -d 1 -n 10 | tee topdata

$ cat topdata | grep "postgres: postgres" | cut -f 25 -d " "

$ cat topdata | grep "postgres: postgres" | cut -f 25 -d " " | wc -l

640

The second line there (output not shown) gets you COMMIT, UPDATE, or idle for each
line. There's no SELECT in here just because those happen so fast it's hard to catch any
of them, which won't be the case for most other workloads.

With 64 clients and ten snapshots the expected number of 640 lines are there. You
can then count by type:

$ cat topdata | grep "postgres: postgres" | cut -f 25 -d " " | grep
"COMMIT" | wc -l

179

$ cat topdata | grep "postgres: postgres" | cut -f 25 -d " " | grep
"UPDATE" | wc -l

459

$ cat topdata | grep "postgres: postgres" | cut -f 25 -d " " | grep
"idle" | wc -l

2

$ cat topdata | grep "postgres: postgres" | cut -f 25 -d " " | grep
"SELECT" | wc -l

0

Now we've learned something interesting just by using top that didn't require any
database level investigation; at any particular point in time, this sample snapshot
of workload had 28% COMMIT and 72% UPDATE statements executing. This isn't a
substitute for a full query profiler, but when you combine it with the fact that you
get process-level CPU and memory information, it's a valuable alternative source
of information.

Monitoring and Trending

[340]

Solaris top replacements
Solaris doesn't ship with top or with a version of ps that shows updated process
titles in the default PATH. You can use /usr/ucb/ps and /usr/ucb/top to get
versions that are more likely to display this information. In general, getting the
process titles to show under Solaris is more difficult, and there are some restrictions
on when it happens. There are some additional notes on this subject in the "Standard
Unix Tools" section of http://www.postgresql.org/docs/current/interactive/
monitoring.html.

The standard Solaris monitoring tool recommended instead of top is prstat.
This utility is fine for monitoring overall system activity, but without being able
to display the process title updates it's much less useful than a fully functional
top for monitoring PostgreSQL.

htop for Linux
One entry in the "build a better top" category is a program named htop (another is
atop). It's usually available as a package on modern Linux systems. In addition to
niceties like color, two of its features make it a compelling improvement over regular
top for some users. The first is that it shows CPU usage broken down by individual
CPU. This makes it much easier to distinguish the situation where a single process is
using all of a CPU from when many processes are using a portion of one. htop also
displays processes in a hierarchy tree format, based on which they spawned. This is a
particularly useful way to display the PostgreSQL processes.

sysstat and sar
After looking at how useful vmstat and iostat data is, you might be wondering how
you can capture it all the time. The standard UNIX system package for this purpose is
named sysstat, and it's not installed or activated on many systems by default. On some
systems, you have to install this package just to get iostat. The easiest way to test out
if you have sysstat installed and working is to run its user interface, the sar program,
and see if anything comes back. If not, you will either have to install sysstat (if sar isn't
even there), or enable it (if it's there but has no data).

Once it's running and collecting data, sysstat collects up data quite regularly, and
gives you a broad perspective of average server performance during each day. The
following comes from the period when all of the benchmark examples described in
this chapter were run:

$ sar

01:20:02 PM CPU %user %nice %system %iowait %steal %idle

01:20:02 PM all 0.02 0.00 0.03 0.11 0.01 99.84

Chapter 12

[341]

01:30:01 PM all 12.18 0.00 5.36 10.74 0.07 71.64

01:40:01 PM all 13.39 0.00 5.71 9.59 0.09 71.22

01:50:01 PM all 1.29 0.00 0.59 0.30 0.01 97.82

02:00:02 PM all 11.22 0.00 5.36 13.68 0.01 69.72

02:10:01 PM all 2.44 0.09 1.59 47.16 0.09 48.62

02:20:01 PM all 5.89 0.00 2.61 4.16 0.01 87.32

02:30:01 PM all 16.09 0.00 6.85 16.58 0.01 60.46

02:40:02 PM all 13.10 0.00 4.52 10.78 0.01 71.58

02:50:02 PM all 11.75 0.00 4.39 9.57 0.01 74.28

03:00:02 PM all 3.48 0.00 6.42 16.63 0.02 73.46

03:10:01 PM all 0.59 0.09 1.19 18.78 0.02 79.34

03:20:01 PM all 1.16 0.00 0.74 40.23 0.08 57.79

03:30:01 PM all 1.92 0.00 1.28 61.33 0.11 35.37

03:40:01 PM all 0.46 0.00 0.38 18.71 0.03 80.41

03:50:01 PM all 0.01 0.00 0.00 0.00 0.01 99.97

You can easily see that the disk subsystem was getting hammered around 3:30 PM,
with an average %iowait of 61%. When averaged over a full 10 minutes, having an
average that high means the server was seriously busy. This period corresponded
with the tests on the pgbench database with a scale of 4000, and the time just before
that includes building the database and its indexes.

One thing sar is quite well suited for is monitoring the memory usage on your
server. Here's a sample of its memory report, showing just the left side of the
result—the right side shows swap use, which in this case was zero:

$ sar -r

01:40:01 PM kbmemfree kbmemused %memused kbbuffers kbcached

01:40:01 PM 1726444 6077460 77.88 390696 4831784

01:50:01 PM 420440 7383464 94.61 394620 6093328

02:00:02 PM 14948 7788956 99.81 6388 6971368

02:10:01 PM 375372 7428532 95.19 22916 6603856

02:20:01 PM 16512 7787392 99.79 6788 6989596

02:30:01 PM 14060 7789844 99.82 6972 6999284

02:40:02 PM 15140 7788764 99.81 6604 6980028

02:50:02 PM 16008 7787896 99.79 9960 6982620

03:00:02 PM 15380 7788524 99.80 6176 6997812

03:10:01 PM 14172 7789732 99.82 64312 6866432

03:20:01 PM 352876 7451028 95.48 68824 6646456

03:30:01 PM 27452 7776452 99.65 72428 6600724

03:40:01 PM 356212 7447692 95.44 74944 6552036

Monitoring and Trending

[342]

This shows you clearly that the 8 GB of RAM on the server was under serious
memory pressure starting after 1:40 PM. The total RAM free shown by kbmemfree
went from 1.7 GB to 15 MB in twenty minutes. One of the things Linux does in
this situation is shred its buffer cache, which you can certainly see as it shrinks
kbbuffers from 394 MB to 6 MB in ten minutes. This also captures one of the known
Linux oddities, that is once the buffer cache has been reduced, it's sometimes slow
to recover afterwards. Eventually it reallocates to bring that cache back to the 70 MB
range, but growth there is gradual. Even after 12 hours, the cache on this system was
still at only 119 MB.

Enabling sysstat and its optional features
It's also possible to get disk I/O data out of sar, but this is even less likely to be
turned on by default due to concerns about collection overhead (specifically disk
space used to save the data). The following is the common error you run into:

$ sar -d

Requested activities not available in file

sar works by collecting data through cron. On RHEL/CentOS Linux, the
configuration file that does so is at /etc/cron.d/sysstat; it defaults to collection
every 10 minutes, but you can make that more or less often by tuning it. This calls the
sa1 shell script, which then runs the sadc (System activity data collector). sadc is the
utility that you pass a flag to in order to have it collect disk activity. So to enable disk
collection, edit the sysstat cron job file on your system and make it look something
like the following:

*/10 * * * * root /usr/lib64/sa/sa1 -d 1 1

Here the -d turns on disk data collection. Once cron has made its next pass over
your system, after that you'll have the same sort of disk activity saved by iostat
available in the history.

On Debian/Ubuntu Linux systems, installing sysstat doesn't start collection. You'll
have to edit /etc/default/sysstat to change the ENABLED entry and then restart
the service before data will be collected:

$ /etc/init.d/sysstat restart

Chapter 12

[343]

Graphing with kSar
sar is a very powerful tool, and you can get monitoring data out in all sorts of
ways. A popular add-on is the kSar Java application; http://sourceforge.net/
projects/ksar/ that allows graphing the data sar saves. Note that kSar can require
some locale adjustments to work. The outline at http://arsenicks.wordpress.
com/2010/01/28/testing-sar-and-ksar/ adjusts the way the data is collected
to be compatible with it, and that's the most straightforward way to handle its
requirements. It's also possible to convert the files after collection if you can't adjust
the server settings, by running it on a new summary file generated with the right
locate; something like the following:

export LC_ALL=C

sar -A -f /var/log/sysstat/sa15 > sardata.txt

This will output the sar data with the right locale for kSar to then read it in.
A good general introduction to using kSar is at http://www.linux.com/archive/
feature/114224.

Note that it's pretty easy to find sar data that kSar just won't parse right. Normally
the entries it doesn't like will come from the very first line of data collected during a
day. Sometimes those need to be manually trimmed away with an editor before kSar
will import the file.

Windows monitoring tools
The monitoring tools available on Windows have a slightly different balance of
strengths and weaknesses compared to the traditional UNIX ones. You can't easily
run them directly from the command line, and there are some additional steps
required before any data can be saved. On the upside, the graphing capabilities
are fully integrated.

Task Manager
The simplest way to monitor what's happening live on a Windows server is
to use the Task Manager, available by right-clicking on the Start bar or by hitting
Control + Shift + Escape. This provides a similar view to the UNIX top utility.

Monitoring and Trending

[344]

Sysinternals tools
Another more powerful option is to download the Process Explorer and Process
Monitor programs from the Sysinternals toolkit; refer to http://technet.
microsoft.com/en-us/sysinternals/. Process Explorer in particular lets you
monitor the system viewing the process title information, and is considered a must
have utility for Windows PostgreSQL servers accordingly.

Windows System Monitor
Windows also has a set of tools that provide similar capabilities to the UNIX vmstat
and iostat utilities, through the Windows System Monitor—originally called the
Performance Monitor, and the command line to run it is still named perfmon. This
utility lets you see live views of system activity that includes functional replacements
for all of the OS-level monitoring tools described previously.

It's possible to disable the performance counters that track disk
activity on a Windows server, and they defaulted to off in the
earlier versions than are common now. To check that they're
turned on, run the diskperf command. You can enable them
by running diskperf –y.

Here is a translation table that suggests the Windows counters that correspond to the
UNIX ones discussed previously:

Windows Counter UNIX Equivalent
Processor\% Processor Time 100% - vmstat %idle
Processor\% Idle Time vmstat %idle
Processor\% Privileged Time vmstat %system
Processor\% User Time vmstat %user
Memory\Pages Input/sec vmstat si
Memory\Pages Output/sec vmstat so
Memory\Pages/sec vmstat si+so
Memory\Available Bytes vmstat free
Memory\Cache Bytes vmstat cached
Paging File(_Total)\% Usage vmstat swpd
System\Context Switches/sec vmstat cs
PhysicalDisk\% Disk Time iostat -x %util
PhysicalDisk\Avg. Disk Bytes/Read iostat Blk_read/s
PhysicalDisk\Avg. Disk Bytes/Write iostat Blk_read/s

Chapter 12

[345]

If you are using software RAID or similar abstractions over your disk hardware, you
might prefer to watch the LogicalDisk figures rather than the PhysicalDisk
ones listed.

As you can see, the same data is available, with similar names in many cases. Since
the database works the same basic way in terms of how it uses the CPU and disk,
you can look for the same general patterns in things like context switching and disk
throughput as they were shown in the problematic examples section on Windows
too. The main concept that doesn't quite translate is how UNIX computes a specific
%iowait percentage. Windows administrators usually using the average disk queue
figures like PhysicalDisk/Average Disk Queue Length instead. However, the
total disk utilization percentages are often a better figure to monitor for database
workloads on this platform too.

Another useful figure to monitor is PhysicalDisk/disk\avg sec / read or
write. Measuring how long an individual write took on an average is helpful in
determining if commits to the WAL are happening at a good pace, for estimating
if database writes are likely executing with a lot of random I/O, and guessing if a
controller write cache might be completely full.

One thing that is certainly easier to do on Windows is account for performance
on a per process basis. The Process and Job Object counter have some counters
that can be used to track processor and I/O statistics per process, using the Select
instances from list section when adding a counter. This is particularly useful
for separating out database activity from that of other processes on the system.

Saving Windows System Monitor data
To replace what's done with sar on UNIX systems, you can enable logging for the
counters System Monitor tracks. It's then possible to see historical data for the logs,
not just the live charts. The exact procedure varies based on version; Microsoft's
guides are at the following:

Windows 2000, XP, Server 2003: http://support.microsoft.com/
kb/248345

Vista: http://technet.microsoft.com/en-us/library/
cc722173(WS.10).aspx

Windows 7,Windows Server 2008 R2: http://technet.microsoft.com/en-
us/library/dd744567(WS.10).aspx

•

•

•

Monitoring and Trending

[346]

Another useful trick to know is that once you've set up logging on a server, you can
save that setup and even move it onto another system. Just right-click on the trace
data and select Save Settings As. The result will be an HTML file with a list of all
the counters you're logging, along with the server name embedded in it. If you edit
that file to refer to a different server, or just remove all the \\servername references
altogether (the default is the local host), you can now load that counter onto another
server. See http://www.pythian.com/news/1349/windows-performance-
monitor-perfmon-tip/ for more information.

Trending software
It's important to know how all these low-level tools work in order to use the more
complicated ones, and when your system is in trouble, there's no substitute for the
really detailed, second by second information tools like vmstat and top deliver. But
most of the time, what people prefer is something more like what sar provides—a
basic summary every few minutes—but with graphs, and if you can integrate in the
database statistics too, so that everything is visible on a unified timeline, then you're
really in a good position to note trends in your server's use.

Types of monitoring and trending software
One of the things that make this area of software complicated to sort through is that
there are several different things people lump under the category of "monitoring".
The major requirements are:

Monitoring for service interruptions. Make sure that all the hosts on the network
are working, the databases are up, and the applications are running. This
category includes monitoring for things like the database disks filling up.
Recording performance data. Track CPU and disk statistics on the server. Take
snapshots of database statistics. Here you might also monitor things like the
number of connections to the database server.
Alert when problems occur. You might e-mail out warnings, page
administrators, or update some sort of operations dashboard. Alerts might be
based on either service issues or performance thresholds being exceeded.
Graphing trends. View the historical and current performance data recorded
by the monitoring system.

Each of the monitoring and/or trending solutions you evaluate will provide a
different quality of implementation for each of these four major areas. Which
software makes sense really depends on how you prioritize each component, and it's
common for companies that need best of breed products in multiple categories here
to end combining two monitoring/trending systems to meet their needs.

•

•

•

•

Chapter 12

[347]

Storing historical trend data
One of the implementation details that is useful to understand is how the storage of
performance data has progressed. Similar to how pg_stat_bgwriter was analyzed
in the last chapter's examples, many of the interesting performance counters you'll
want to monitor and then produce trend graphs will increase over time. The data
that comes out of such a counter can be thought of as a series of (timestamp,count)
samples. Two important questions to answer are where to store this series of points,
and how to query them usefully.

The first generation of trend monitoring software was used to chart network
performance data, typically collected using the Simple Network Management Protocol
(SNMP) protocol that better routers and switches published their information using.
You might ask SNMP for the number of bytes transferred over a port on a router, then
store the resulting time/count data somewhere for later analysis.

A program named Multi Router Traffic Grapher (MRTG) became the popular
open-source solution to graphing this data. MRTG is a straightforward Perl script
that can be configured to store the resulting data in simple plain text log files, and
you might even push the results into a database instead. Problems with this approach
include how to clean up old files, and how to handle the situation where the graphing
time scales of the original collected data are not exactly the same. These are not
problems that are easy to solve in standard databases that use query interfaces like
SQL. If you tried, you'd discover a constant need to worry about things like sample
rate conversion and concerns about how to deal with missing data points.

After fighting with that class of problems for awhile, the author of MRTG built a
second generation data storage mechanism named the Round Robin Database tool
(RRDtool). The "round robin" part describes the way storage overflow is managed.
Each database is designed to store some amount of history, and once filled oldest
points are replaced with the newest ones, treading the storage as a circular ring. The
implementation also provides a good theoretical model to deal with interpolating
over missing data and resampling to higher time scales. Many of the current second
generation of open source trending tools are built using RRDtool.

Nagios
The most commonly mentioned monitoring/trending software compatible with
PostgreSQL is Nagios, which is itself a popular open source project active for more
than ten years now. You can monitor just about everything—OS, network, database,
applications—with either the base Nagios or using one of its many plug-ins.

Monitoring and Trending

[348]

Nagios is primarily a monitoring system that looks for common problems and then
issues alerts when they happen. You can use it to detect when network hosts have
gone down, when the database is doing something unexpected, and e-mail out
alerts when those conditions are met. If your requirements include things like "page
people when the database disk is running out of space based on this on-call support
schedule", Nagios is the first tool you should consider using for that purpose.

The simultaneous strength and weakness of Nagios is that the core of the program
doesn't really know how to monitor or graph anything. It relies on a vast set of
plug-ins to provide everything beyond the core. This is really flexible, but hard
to get started with.

Nagios calls counter recording "Performance Data". The data comes in using a
plug-in and it's written to either flat files or a database like PostgreSQL/MySQL.
And then some other tool, originally MRTG, is hooked into Nagios as a plug-in
to draw trend data. Popular graphing plug-ins include Nagios Grapher
and PHP4Nagios.

The main limitations of Nagios compared to the other tools is how much work is
needed to set up everything if what you want it for higher-level trending work.
You'll be editing a lot of unforgiving plain text configuration files, along with
selecting and configuring plug-ins for monitoring, data storage, and graphing so
they all work together. It's even possible to configure Nagios so it's more like a
second-generation tool, storing its data into RRDtool and integrating with the
sort of tools it's easier to build on that infrastructure.

If your goal is a single integrated solution and you need the strong alerting features
of Nagios, that might all be worthwhile. Most of the alternatives to Nagios lean more
towards trending rather than alerting, and accordingly they are usually easier to
setup for that purpose, as well as more powerful in their base installs. You can do
just about anything in Nagios, as long as you're willing to go through the trouble
of installing and configuring all of the necessary plug-ins required.

Nagios and PostgreSQL
There are a few projects that monitor a PostgreSQL database and output the
results in a way that is compatible with Nagios. The best of these tools in terms
of active development and the feature set is check_postgres available from
http://bucardo.org/wiki/Check_postgres.

Chapter 12

[349]

In addition to the usual database statistics, highlights of what you can watch using
this program that aren't necessarily obvious how to monitor directly include:

How close the database is to running out of transaction IDs, suggesting a
vacuum problem
Whether tables and indexes appear bloated from poor cleanup of dead rows
If any particularly long queries or idle transactions are running
Checking if checkpoints are occurring regularly and archived files are being
shipped properly to a standby server

Note that check_postgres can be run from the command line too, so it's not just
limited to use with Nagios. If you find the monitoring report data it generates useful,
but don't want to use all of Nagios, you could script actions by running it directly
and acting on the results. That would save quite a bit of time instead of starting from
scratch to develop a similarly high quality of monitoring points for the database.,
and reading the check_postgres source code can be quite educational for learning
how to write your own customized monitoring queries.

Nagios and Windows
While you can't install Nagios itself on Windows, if you do have a UNIX-like system
it will run on that, you can use it to collect data from a Windows server. You simply
install a Windows data collection agent that reports back to the main Nagios system,
such as NSClient++ or NC_Net. Setting up these agents is covered in the Nagios
installation guide.

Cacti
The second most popular application you'll see used to monitor PostgreSQL servers
is Cacti. Cacti relies heavily on web application technology and RRDTool to do
its work. This approach, heavily leveraging external libraries but including more
features in the core, gives working with Cacti a slightly different feel than using
Nagios, from installation to usage.

Cacti is primarily a trending system, and it doesn't do alerting. It generally has a
nicer UI and is more powerful for analysis purposes than Nagios. But its scope is
limited. Where Nagios aims to satisfy all sorts of purposes moderately well, Cacti
focuses on the monitoring portions that require trend analysis (the strength of its
RRDTool core), trying to do a superior job in that area.

•

•

•

•

Monitoring and Trending

[350]

Cacti and PostgreSQL
Currently the support for PostgreSQL specific monitoring using Cacti is still too
rough and under development to properly document here. See http://wiki.
postgresql.org/wiki/Cacti for a live document covering what's available.

Cacti and Windows
Unlike Nagios, it's possible (albeit complicated) to get Cacti running directly on
a Windows host. It requires setting up a web server, PHP, a MySQL database
server, and various Cacti components. Reports about the quality of the result
are generally positive.

Munin
Munin is a smaller and more recent tool than either Nagios or Cacti. It uses the same
RRDTool data analysis structure as Cacti, with an emphasis on making it easy to
create new visualization plug-ins. It can integrate into the Nagios alerting structure.
The http://www.postgresql.org/ site uses it in that way, combining a Nagios
based alerting system with the more powerful graphing capabilities of Munin.
There is a PostgreSQL plug-in for Munin at http://muninpgplugins.projects.
postgresql.org/ that supports the basic server monitoring tasks, but not the
sort of complicated derived views that check_postgres supports.

Munin is also one of the easiest monitoring projects to get started with and
develop additions to. If you set up Munin to monitor hosts and just turn on all of
the recommended host checks (CPUs, memory, disks), the data it will collect and
the graphs it creates will include almost everything needed for basic performance
analysis. The same is true of its PostgreSQL monitoring plug-in. Set it up, point it
as your database, and the default set of data collected will be great.

From the perspective of getting high quality graphs that combine operating system
and PostgreSQL statistics into one usable set with the minimum of set up work,
Munin delivers the best bang for the buck of the open source packages around,
it's easy to combine with Nagios for alerting purposes helps too.

Other trending packages
There are several other alternates for PostgreSQL monitoring and trending with
various benefits and drawbacks.

Chapter 12

[351]

pgstatspack
A slightly different spin on database monitoring than the rest of the packages listed
here, pgstatspack does exactly what last chapter's pg_stat_bgwriter example did: it
just saves periodic snapshots of the PostgreSQL statistics into tables for later analysis.
The design was influenced by the very popular statspack utilities for Oracle. The
project is hosted at http://pgstatspack.projects.postgresql.org/ and a good
introduction to it is at http://www.fuzzy.cz/en/articles/db-tuning-using-
pgstatspack/.

The main problem with this approach from my personal perspective fall into
three categories:

1. Database statistics alone are not sufficient to solve complicated performance
issues. You have to collect operating system level information too.

2. Aggregating snapshots stored in this fashion into different time scales is a
harder problem to solve than it appears at first. The reason why programs
like RRDTool exist is because they solve that particular problem well.

3. Graphing data over time is the easiest way to find trends. pgStatspack
provides a SQL interface to the data.

I suspect that many people who start with pgStatspack will eventually end up
needing to add more powerful trending and monitoring tools to the database
anyway, which makes me question the value of this intermediate step. But its my
perspective, its not shared by everyone.

If you're the type of DBA who is focused on the database and wants to use primary
tools hosted within it, pgStatspack may be an appropriate tool for you. Similarly,
if you're used to using similar Oracle tools, having this available may make the
PostgreSQL environment easier to get used to.

Zenoss
Zenoss is a hybrid license product that is a bit slicker to setup and use than most of
the tools mentioned here. The Zenoss Core is an open source monitoring solution,
and the company also has a commercial enterprise version as well. While not
particularly popular for PostgreSQL use yet, it is supported and the rest of the
integrated infrastructure around Zenoss can be valuable for some environments.
Extensions to Zenoss come bundled into a module called a ZenPack. A recently
released PostgreSQL ZenPack is available at http://community.zenoss.org/docs/
DOC-3389.

Monitoring and Trending

[352]

Hyperic HQ
Another commercial product with integrated PostgreSQL monitoring is Hyperic HQ,
refer http://www.hyperic.com/products/postgresql-monitoring.

One advantage of using Hyperic's products is that they monitor a whole lot of other
types of software as well. If you want to monitor your database and application
server using the same technology, it may be easier to do so with Hyperic than some
of the more OS or PostgreSQL focused tools mentioned here. Similarly, there are
even Hyperic plug-ins aimed at monitoring connection poolers like pgpool. It's real
strength is letting you see how these various levels of your application fit together
from a performance perspective. On the flip side, PostgreSQL support in Hyperic
HQ is not always kept current. As this is being written, they haven't even added
support for PostgreSQL 8.4 yet.

Reconnoiter
After struggling with none of the other tools listed here quite fitting their needs,
Internet application and support company OmniTI built a solution optimized for
their needs named Reconnoiter and released the results to world recently, refer
http://labs.omniti.com/.

Compared to Nagios, it's less complicated to set up, it is optimized to use less
resources, and has built-in trending capabilities. It uses a standard PostgreSQL
database to store its data, which provides some synergy if you're already using it
for other purposes, and instead use the RRDtool approach where storage is reused
aggressively, Reconnoiter considers using large amounts of disk space for logging
historical data at a fine time scale a feature rather than a problem.

As shown in the problem examples before, there are often performance situations that
really matter to your application that you can only see if you drill down into second-
level data, ones that disappear when averaged out over a longer time period. RRDtool
as commonly used in tools like Cacti stores limited data at any sort of fine time scale.
Instead, the assumption is that if you're going back months instead of hours, you'll
be satisfied with minute or hourly level data. Monitoring with Reconnoiter instead
would allow finding a similar period in the past and potentially drilling down into all
the sub-minute data it still has stored. For applications sensitive to latency, being able
to track down performance issues to this resolution scale after the fact can be
quite valuable.

Chapter 12

[353]

Staplr
Staplr was developed by heavy PostgreSQL website http://www.myyearbook.com/
for their own trending statistics analysis. Staplr has proven capable of
helping to scale up one of the biggest sites using the database around. It's not in
heavy use outside of the company yet and the documentation is minimal, refer
http://github.com/myYearbook/staplr; so far it still feels like an internal tool
rather than a larger community project. It is worth looking at when evaluating
PostgreSQL centric trending systems.

SNMP tools
Many larger companies rely upon SNMP for their enterprise wide system
monitoring. There is a very basic PostgreSQL SNMP MIB available at
http://pgsnmpd.projects.postgresql.org/, but it hasn't been updated
for several years as of this writing.

Summary
Attempts to improve database and operating system performance are best done
using careful observation, not speculation, in order to determine where the system
bottlenecks are. You need to start that before you have a performance problem, to
record baseline information. Most production database servers should consider
basic monitoring and trending setup, a requirement of their early deployment.

However, it is helpful to know the low-level tools too, because the longer term views
provided by most monitoring and trending tools will miss brief problems. With
today's breed of database applications, even a pause lasting a few seconds could be
a major response time failure, and it's one that you wouldn't even be able to see in
data collected on a minute scale. Both short-term and long-term data collection has
considerable value, and knowing when to switch the detail level focused to match
the problem at hand is a valuable skill to hone.

Use vmstat on a very short timeframe to get a feel for general hardware and
operating system performance. If left running on a slightly longer scale, it can
work as a simple screen sized trend analyzer too.
Running iostat allows you to see the balance of reads and writes to the
various disks you've split your database and application over.

•

•

Monitoring and Trending

[354]

Watching the total percentage of time a disk is being utilized is more useful
than any queue or transfer total figures for determining how close it is to
maximum capacity. It even allows you to estimate the random vs. sequential
balance of the workload that disk is running.
Periods with bad database response time will usually have a high waiting for
I/O percentage, a drop in context switches and/or a decrease in the number
of processes running. Exactly what pattern appears gives you a clue as to
where the most likely performance bottleneck is at.
The top utility is both a useful source for performance snapshots and
something you can use to save simple performance logs for analysis in
special cases.
If you're on a Linux system where the htop or iotop utilities are available to
you, these provide even more detail that's quite useful for finding real-time
performance issues as they happen.
Historical data can be collected and reported on with the sar utility,
albeit at a rough time scale that will average out some performance spikes
into invisibility.
Windows has functional replacements for all these UNIX utilities,
particularly if you install a small number of useful monitoring tools.
Nagios is primarily a monitoring and alerting system, but it can be used for
basic trending as well.
A variety of true trending graph analysis packages are available with various
degrees of PostgreSQL monitoring support, with Cacti and Munin as the
most popular trending focused ones available.

•

•

•

•

•

•

•

•

Pooling and Caching
One of the unfortunate limitations of any database software, one that's particularly
apparent in PostgreSQL, is that there is a lot of overhead you're paying for, even
when executing really simple queries. If you have a complicated join happening, you
should be happy to pay the expense of query optimization. But if you're just reading
a simple table, the overhead of opening a database connection and waiting for that
query to execute can be higher than you'd like.

There are two common approaches for reducing that overhead, pooling and
caching, and both are introduced in this chapter. This sort of software is external
to the database, it is relatively complicated to set up, and its use is very application
dependent. Accordingly, the focus here is on general theory rather than trying to
show a working example. It's unlikely any one example would translate into your
environment very well anyway.

Connection pooling
PostgreSQL does not highly prioritize making the act of connecting to the database
as a one that happens quickly. Each connection requires starting a new process to
talk to the client—a fairly expensive operation, and things like the pg_hba.conf
authentication implementation are optimized for security and flexibility even if
it's at the expense of speed. The presumption is that users will run things for a
long time relative to how long it takes to connect.

When this isn't true, which can be the case for web applications in particular,
connection pooling is one approach to reduce this overhead. The connection pool
sits between your application and the database. It makes a fixed number of
connections to the database, typically under 100, and keeps them open all the
time. As incoming requests come in, those connections in the pool are re-used. The
DISCARD ALL command can be used in a PostgreSQL session to make it "fresh" for
a new connection. When clients disconnect, the pooler resets the session without
dropping the database connection, leaving it ready for a new connection to use.

Pooling and Caching

[356]

Pooling connection counts
The fundamental idea behind sizing a connection pool is that you should have
enough connections to use all of the available resources, but not significantly more
than that. The right size to saturate the server in most cases depends on the number
of CPU cores, how much of the database is cached in memory, and the speed of the
underlying disks. Once you've moved beyond the point where the server is busy
all the time, adding more connections only serves to reduce efficiency, forcing
the server to swap among multiple tasks when it would be better served with
a smaller number.

It's hard to predict how many pooled connections to the database are necessary to keep
it fully loaded without overloading it. Many users report optimal pooling counts to
be between two and three times the number of cores on the system, perhaps more on
a system with a large number of drives. A standard iterative technique is to start with
100 connections and then tune the number down from there if the server load seems
too high. Prepare to be surprised at how low the optimal count really is; it's probably
lower than you'd expect. Even though you might think that your server needs lots of
connections to service a heavy load, in reality once you've saturated all of the CPUs on
the server trying to execute more things at once just decreases efficiency. Almost all of
the time, you'll be better off queuing the connections, so that they wait without causing
contention and then execute on a lightly loaded server.

There are a few rules of thumb for how many connections define too many. On a
typical UNIX derived operating systems such as Linux, the point at which adding
additional connections becomes really ineffective is generally between 500 and 1000
active ones. If many of your connections spend a good chunk of their time IDLE
(as shown by pg_stat_activity), you can discount their average overhead to
some extent. Generally, having fewer connections than that is optimal, but you don't
necessarily want to add the overhead of maintaining a pool until the server is really
swamped. If your connections count is well into the thousands of active sessions,
you definitely want to use a pool rather than direct connections.

Windows systems don't scale to as many connections in general, and there's a
hard limit you'll run into in most cases too. If you are running the PostgreSQL
server as a service, rather than directly from the command line, it will typically
be assigned 512 KB of "Desktop Heap" space to work with. Since each connection
takes approximately 3.2 KB of space, expect your server to run out of space in the
heap and therefore stop accepting new connections after approximately 125 of
them. It's possible to increase the heap size, but there's a potential that your system
will not boot if you set it too high. See the "I cannot run with more than about 125
connections at once" entry at http://wiki.postgresql.org/wiki/Running_%26_
Installing_PostgreSQL_On_Native_Windows for more information about this

Chapter 13

[357]

limitation and possible workarounds. Generally, the best workaround is to use a
connection pooler that limits the number of connections to be below this threshold,
as this will improve server efficiency too.

From a monitoring perspective, connection pooling is likely to help if you have
hundreds or more of connections and you see that most of your system's processors
are being fully utilized. Connection overhead will show up as a mix of user and
system/kernel time, so expect both to reduce with a pooler in front of the database.
If your system spends most of its time waiting for disk I/O instead, it's unlikely
a pooler will help you out. Caching might however.

pgpool-II
The oldest of the PostgreSQL compatible packages used for connection pooling that's
still in development, pgpool-II improves on the original pgpool in a variety of ways:
http://pgpool.projects.postgresql.org/.

Its primary purpose is not just connection pooling, it also provides load balancing
and replication related capabilities. It even supports some parallel query setups,
where queries can be broken into pieces and spread across nodes where each has
a copy of the information being asked about. The "pool" in pgpool is primarily to
handle multiple servers, with the program serving as a proxy server between the
clients and some number of databases.

There are a few limitations to pgpool-II setup to serve as a connection pooler. One
is that each connection is set up as its own process, similar to the database only
re-used. The memory overhead of that approach, with each process using a chunk
of system RAM, can be significant. pgpool-II is not known for having powerful
monitoring tools either. But the main drawback of the program is its queuing model.
Once you've gone beyond the number of connections that it handles, additional ones
are queued up at the operating system level, with each connection waiting for its
network connection to be accepted. This can result in timeouts that depend on the
network configuration, which is never a good position to be in. It's a good idea to
proactively monitor the "waiting for connection" time in your application and look
for situations where it's grown very large, to let you correlate that with any timeouts
that your program might run into.

pgpool-II load balancing for replication scaling
Because of its replication and load balancing related features, for some purposes
pgpool-II is the right approach even though it's not necessarily optimal as just a
connection pool. pgpool-II supports what it calls master/slave mode, for situations
where you have a master database that handles both reads and writes as well as
some number of replicated slaves that are only available for reading.

Pooling and Caching

[358]

The default replication software it assumes you're using, and only one available in
older versions of the software, requires you have a set of databases all kept in sync
using the Slony-I replication software. A common setup is to have a pgpool-II proxy
in front of all your nodes, to spread the query load across them. This lets you scale
up a read-only load in a way that's transparent to the application, presuming every
node is qualified to answer every query.

Starting in pgpool-II 3.0, you can use this feature with the PostgreSQL 9.0 streaming
replication and Hot Standby capabilities too. The read-only slaves will still be a
subject to the limitations of Hot Standby described in the Chapter 14, Scaling with
Replication. But within those, pgpool-II will handle the job of figuring out which
statements must execute on the master and which can run against slaves instead.

As with the Slony case, it does that by actually parsing the statement that's executing
to figure out how to route it. The way it makes that decision is covered in the
pgpool-II documentation. This is one of the reasons pgpool-II is slower than
pgBouncer, that it's actually interpreting the SQL executing. But as it enables
the intelligent routing capability too, this may be worth doing.

pgBouncer
The PostgreSQL connection pooler with the highest proven performance in the field
is pgBouncer, a project originating as part of the database scaling work done by
Skype: http://pgfoundry.org/projects/pgbouncer/.

Designed to be nothing but a high-performance connection pooler, it excels at
solving that particular problem. pgBouncer runs as a single process, not spawning
a process per connection. The underlying architecture, which relies on a low-level
UNIX library named libevent, was already proven for this purpose in the field—the
memcached program uses the same approach. The internal queue management for
waiting connections is configurable so that it's easy to avoid timeouts.

And when time comes to monitor the pool itself, it displays its internal information
by a database interface you can even send commands to, serving to both provide
information and provide a control console. Simply connect to the pgbouncer
database on the port where pgBouncer is running, using the standard psql tool, and
you can use the SHOW command to get a variety of information about the internal
state of the pool. The console interface accepts commands like PAUSE and RESUME
to control the operation of the pool.

Chapter 13

[359]

Another neat feature of pgBouncer is that it can connect to multiple underlying
database servers. You can have databases on different hosts look like different
databases on the single host the pool is running. This allows a form of partitioning
for scaling upward if your system's load is split among many databases. Simply
move each database to its own host and merge them together using pgBouncer as
the intermediary, and your application won't even need to be changed.

If you have hundreds or thousand of connections and are out of CPU time,
pgBouncer should be your first consideration as a way to reduce the amount of
processor time being used. The main situations where pgpool-II works better at
this point are ones where its load-balancing features mesh well with the replication
approach being used.

Application server pooling
Depending on the application you're running, you may not need to use a
database-level connection pooler. Some programming models include what's
referred to as an application server, an idea popularized by Java. Popular application
servers for Java include Tomcat, JBoss, and others. The Java database access library,
JDBC includes support for connection pooling. Put those together, and you might
get efficient database connection pooling without adding any more software to the
mix. Tomcat calls this its Database Connection Pool (DBCP). A longer list of
open-source pooling software is available at http://java-source.net/open-
source/connection-pools and commercial vendors selling application servers
might include their own pooler.

There are also application poolers available for some other programs, too. It's not
an idea unique to Java application servers. If you have such an application level
pooling solution available, you should prefer it for two main reasons, beyond just
reducing complexity. First, it's probably going to be faster than passing through
an additional layer of software just for pooling purposes. Second, monitoring of the
pool is integrated into the application server already. You'll still need to monitor
the database underneath the pool.

Database caching
The fastest type of database query is the one that doesn't happen at all. There are
ways to avoid actually passing queries through to the database that can seem like
a silver bullet for scaling at first, even if they're only effective at reducing certain
types of load. You need to understand the limitations of the underlying technology
to make sure that the non-database semantics introduced by that change don't cause
your application any issues.

Pooling and Caching

[360]

memcached
memcached starts up with a block of memory it's allowed to use for caching, one
that it manages quite efficiently. Like pgBouncer, incoming connections are handled
using the libevent library, so that any number can be serviced without timeout
issues. The interface to the program lets you define key/value pairs of information
that are then stored. Keys can only be up to 250 characters long, and values are
limited to 1 MB. The program's popularity comes from how easily it can be used
to cache content in a web site. Returning to the idea that the best database query
is the one that doesn't have to happen, the fastest way to return a database-driven
web page a second time is to send a cached copy of it. This avoids both the database
query and the page rendering.

If you can figure out how to map your incoming requests into keys without spaces
in them (which is easy for most web site URLs), and how to save the result into
the amount of space the cache can hold, memcached will do all the dirty work of
keeping the cache optimally filled with useful data, and key generation doesn't have
to be hard either. The robust way to generate this generally is to use a hash code
generation scheme, such as the PostgreSQL hashtext implementation discussed in
Chapter 15, Partitioning Data; MD5 and SHA are other popular hashing approaches.
This will let you arbitrarily turn long strings into smaller ones with minimal chance
of a collision in the generated keys.

While not directly a database technique, using memcached to cache higher-level
content can avoid page rendering which would have otherwise required a database
lookup. You just need to make sure you have a way to invalidate those pages when
the underlying content changes. That's the main non-obvious complexity you'll run
into with any non-trivial memcached deployment.

pgmemcache
If you can resolve the page invalidation problem in a more general way, it's possible
to use memcached as an intermediary for database queries too. When a user on a
web site is grabbing their own data over and over, but not modifying it, you should
be able to figure out how to cache database lookups related to their data usefully.
Then you just need to be careful to throw those pages out if the data is modified.

The way to do that in PostgreSQL is quite straightforward: simply add a pair of
triggers for AFTER UPDATE ON and AFTER DELETE ON for any table you are storing
in the cache. If you take care of that, you can use the pgmemcache program from
http://pgfoundry.org/projects/pgmemcache/ in order to handle the routine
chores of setting up memcached for storing database information.

Chapter 13

[361]

There is a second program with the confusingly similar name of
pgmemcached that was a development effort related to PostgreSQL/
memcached integration. This project was completed and abandoned
in 2008. pgmemcache is now recommended as the program to use
here even by the original author of pgmemcached.

This technique is particularly well suited to serving key/value data from a
PostgreSQL database efficiently, simply by allocating some memory for pgmemcache
to cache the most popular parts. This combination gives the fast response times of a
cache for read operations and the integrity and complicated query capabilities of a
database, with the downside of a small window for write race conditions while the
update/delete trigger is modifying the value in the cache.

Recent releases of pgmemcache have broken compatibility with PostgreSQL
versions before 8.4. This is covered in the README.pgmemcache file distributed
with the program, and a presentation noting that and other useful trivia about
the program is available at http://projects.2ndquadrant.com/char10.

One feature PostgreSQL is currently missing is materialized views, a technique
which lets you run an expensive query and save its output for use by later clients
who want the same data. You can implement a simple version of that technique
using pgmemcache. Consider the case of an expensive daily report. You might run
that and update the value in the cache manually each day. Then clients can just ask
for that cached result, knowing they'll always get the current day's data with low
server impact.

Summary
Large deployments of PostgreSQL systems go through several common phases as
the number of database clients increases. You're likely to run into disk bottlenecks
initially. These can sometimes be bypassed by reorganizing the system so more of
the active data is in RAM. Once that's accomplished, and the system is sized properly
so the database is mainly returning information that's in fast memory, it's quite easy
to move onto a new bottleneck. One possibility is that you might then be limited by
the relatively high overhead of creating a database connection and asking it for data.

Pooling and Caching

[362]

When reaching that point, there are two major approaches to consider. You can
reuse database connections with pooling, or try and cache database activity outside
of the database. The best part is that these two approaches both stack on top of one
another. You can for example use pgmemcache to reduce database reads, while also
using pgBouncer to reduce the connection overhead for the reads that still happen.
Separately or as part of that, you might also scale upwards by replicating the
database or partitioning your data set across multiple systems, these subjects
will be covered in more detail over the next two chapters.

Opening a new PostgreSQL connection is a fairly expensive operation in
terms of CPU used.
Connection poolers keep some of those connections open all the time to
reduce that overhead.
The connection pool should be sized to just use all of the system's resources,
typically less than 100 connections.
Systems with >500 clients are very likely to benefit from a pool.
Windows systems will rarely go >125 clients before running into resource
limits, making pooling an even higher priority.
pgpool-II can be used for connection pooling, but needs to be carefully
monitored for network timeout issues.
pgpool-II allows load balancing connections among multiple replicated
slaves to scale read-only traffic usefully, when combined with Slony-I
or the streaming replication of PostgreSQL 9.0.
pgBouncer is the preferred PostgreSQL connection pooler if you just
need pooling.
Monitoring pgBouncer is done by connecting to an internal pseudo-database.
Page and/or database caching can limit the amount of work that the
database needs to do.
memcached can be used to cache anything you can represent as a key/value
pair, most popularly web pages.
pgmemcache combined with database triggers allows caching database
lookups with little loss in transactional behavior.

•

•

•

•

•

•

•

•

•

•

•

•

Scaling with Replication
Sometimes when trying to improve database performance, the most practical approach
is to add more copies of the data and spread out the load over them all. There are a
variety of PostgreSQL projects that replicate data across multiple nodes that you might
be able to use for that purpose. Also, high performance systems tend to come with
high availability requirements, with their respective overhead, too. Learning how to
co-exist with your replication software may impact your performance tuning work,
even if the copies are not being used actively for load distribution.

Note that none of the mature tools mentioned in this chapter support scaling up
for high write volume usefully. The best explored solution in that category is using
pl/Proxy, as described in the partitioning chapter. Write volume scaling is also
a goal of Postgres-XC. In general, when we're talking about scaling a database
upwards by adding nodes, this is allowing more reads to happen against the
same data, but without an improvement in the write speed.

Hot Standby
PostgreSQL has shipped with an integrated standby feature since its version 8.2.
This allows creating a master/standby pair of nodes, where the standby regularly
receives a log of database updates from the master. With the currently common
warm standby configuration, introduced in PostgreSQL 8.2, this allows a high-
availability setup where, if the master is lost, the slave can be brought up quickly
to replace it.

Starting with PostgreSQL 9.0, it's possible to run queries against the standby server
or servers as well. This Hot Standby feature lets you scale up read workload by using
a pool of multiple read-only servers. You just need to architect your application so all
writes go to the master node.

Scaling with Replication

[364]

Terminology
There are several terms you need to know in order to follow any discussion of warm
or Hot Standby setups:

Write-ahead log (WAL): PostgreSQL writes information to a series of
write-ahead log files, in segments of 16 MB in size, before making
corresponding changes to the database itself. If you start with an identical
pair of databases, and apply the same WAL files to them, the resulting pair
will also be identical—since the WAL contains all changed data.
Base backup: A backup made of the database in a way that includes
everything needed for the copy to go through crash recovery and be intact,
even if files were changed during the time the backup was being made. This
requires using the pg_start_backup and pg_stop_backup commands, as
well as making backup copies of both the entire database and the WAL files
archived during the period between when those commands were executed.
Point-in-time recovery (PITR): If you have a base database and a series
of WAL files, you can apply just some of them and then stop recovering
information from those WAL files; this allows the point-in-time recovery
feature. This even allows complicated recovery situations like alternate
timelines, where a rebuilt database diverges from its original history—
perhaps multiple times in search of the best place to recover to—before
the server is started.
File-based log shipping: If you make a base backup of a server, and then
"ship" all of the new WAL files it archives to another server, that new server
can be kept in sync with the original.
Standby: A system with a complete base backup and a stream of file-based
logs shipped to it can be a standby; a server with exactly the same data
as the original. A standby is kept up-to-date as new transactions appear
(or time passes) and WAL files are shipped to it. A warm standby
continuously applies new WAL files as they appear.
Failover: Taking the standby out of recovery mode and turning it into an
active server, using what's called a "trigger" file. In intentional failover
situations, you can stop the primary first and make sure all its data has been
flushed. In a true failure of the primary situation, this will not be possible.
Some recent transactions (the ones not yet shipped to the standby) committed
on the primary may not be available on the standby that's now promoted
to being a primary.

•

•

•

•

•

•

Chapter 14

[365]

The important thing to realize here is that the WAL is a stream of block-level changes
to the database. You can't filter the results by database or any other mechanism;
you can only make a perfect copy of an entire PostgreSQL cluster. The transport
mechanism used doesn't know anything about the transactions involved, it just
knows how that turned into changes to the database on disk.

Setting up WAL shipping
The exact way you set up replication using WAL shipping varies based on
PostgreSQL version, and a fair amount of additional scripting is required. There are
several software packages available that fill in the gaps by providing the components
required, including a working archive_command implementation, base backup, and
node management.

2warm: http://projects.2ndquadrant.com/
walmgr: Part of SkyTools, http://pgfoundry.org/projects/skytools/
PITRtools: https://projects.commandprompt.com/public/pitrtools
OmniPITR: https://labs.omniti.com/trac/pgtreats/wiki

As a primary author of the first of these, I'm not an unbiased commentator on which
of these is the best solution to this problem. Getting all of the details right here takes
more work than is obvious on the surface, and using one of these packages should be
preferred to trying to write something from scratch.

The main tunable parameter to note with basic WAL shipping is archive_timeout.
This determines how long a WAL file can sit on the master before it gets shipped to
the standby, regardless of whether it's full or not. If you want to reduce the window
of potential data loss, you might reduce this value to a much lower value. But be
careful: this can significantly increase the overhead of processing, network use, and
disk use from WAL shipping. The 16 MB WAL files pile up surprisingly quickly
if you try to do something like minimize lost transactions by setting the archive
timeout to only a few seconds; that really doesn't work.

PostgreSQL 9.1 expects to remove the need for any of this additional software to
be needed, by instead integrating things like the base backup into the Streaming
Replication protocol.

•

•

•

•

Scaling with Replication

[366]

Streaming Replication
The other major replication related feature in PostgreSQL 9.0 is Streaming
Replication. Once the standby server is synchronized with the master, this new
feature will asynchronously send new WAL data over the network shortly after it's
committed, in something close to real-time if things go well. This replication style is
sometimes referred to as semi-synchronous replication. It's not fully synchronous,
but the delay between commit and replication will be quite short in most cases; it's
typically under a second, something impossible to accomplish with earlier versions.
Expanding the database feature set to include fully synchronous replication instead
when desired is in progress right now, and is expected to be included in the future
PostgreSQL 9.1.

Tuning Hot Standby
Imagine the case where the standby is replaying the block changes resulting from
a DROP TABLE on the master. If you're using Hot Standby to run queries on the
standby, it's possible there's one using that table already running when these changes
arrive. The server has two choices at this point—it can either apply the changes, or it
can continue to let the query run; it can't do both.

While getting rid of a table is a rare situation, this is just the easiest to understand
example from a class of problems where Hot Standby cannot replay some blocks
without cancelling queries that expect them to be there. One of the most common
sources for such changes happens when you vacuum the master database.

What the server should do when this happens really depends on the priorities
of your standby server. There are three fundamental things you might want to
do with your standby server:

Prioritize keeping the standby current. Your goal is to have a seamless, quick
failover if the master goes down.
Prioritize being able to run long queries on the slave. One popular use for
this form of standby is to offload large batch reports, such as end of day or
month summaries, to run on the standby. This should reduce the load on
the master.
Prioritize minimizing the impact of the standby server on the master. Ideally
the standby would be completely decoupled from the master, but doing that
introduces some potential issues.

•

•

•

Chapter 14

[367]

The nature of the problems here are such that you can only do two of these three
things at a time. The good news is that you can pick which two. There are a few
tunable parameters and some techniques available that let you decide exactly how
to skew your implementation in regards to these three goals. The parameters are:

max_standby_archive_delay and max_standby_streaming_delay:
Controls how long a block change from the two possible sources here
(a shipped archive file and Streaming Replication) that will interrupt a query,
will be allowed to wait before it causes that query to be cancelled. Increasing
these value prioritizes running longer queries, at the expense of keeping the
standby current.
vacuum_defer_cleanup_age: Increase this parameter on the master in order
to delay vacuuming for this number of transactions. This prioritizes running
long queries without cancellation, but there will be higher overhead on the
master because vacuum will lag behind its normal activity level. While this
only improves the situation with cancellation from vacuum activity, since
that is the most common source for conflicts in most normal database use
(where tables aren't being modified, only the data in them is) it helps quite
a bit.

The expected evolution of the Hot Standby design in future versions of PostgreSQL
will let the standby, export information about what queries are running to the
master. This approach lets the master work similarly to how MVCC prevents this
sort of problem from happening on a single server: the system will keep old versions
of any row that might still be needed for a running query from being cleaned up. It's
possible to do this with the current PostgreSQL 9.0 by opening a connection from
the standby to the master and starting a transaction before running a long query,
perhaps using the dblink contrib module. The best way of doing that is still a topic
of research at the point this is being written.

One way to work around the fact that standby servers can't be tuned universally is
to simply add more than one of them. There's nothing to prevent you from having
two standby systems, one optimized for high-availability with low standby delay
parameters, while a second is optimized for long reports.

Replication queue managers
At the other end of the spectrum, some replication software does statement-based
replication. Rather than sending blocks over, the list of transactions made to each
table are extracted from the database, typically with triggers. Then those statements
can be saved to a queue, shipped to some number of slave nodes, and then executed
there. This introduces some non-trivial overhead on the master server, because the
overhead of the triggers, queue management, and statement shipping is moderate.

•

•

Scaling with Replication

[368]

However, the resulting copies are then completely independent of the master server,
and unlike WAL shipping approaches, you can pick and choose exactly which tables
do and don't get shipped to the standby. In addition, since high-level statements
are being shipped, the servers don't even need to match perfectly. This form of
replication is therefore useful for doing PostgreSQL version upgrades. You can bring
a server running a newer version of the database software up, add it as a replica, and
let it stream the data from the master with whatever speed you want until it catches
up. Once it's current, a standard failover to that new node will allow you to bring the
database up running that newer version.

It's not unusual for developers to think that they can just ship statements between
database servers themselves, rather than use one of these packages. One hidden
complexity in doing statement level replication is coping with non-deterministic
statements, where the exact result will vary if you execute the same thing on a
different server. Three sources for such data are calls to generate random numbers,
sequence generation, and statements that incorporate a server timestamp. You can
expect the latter in particular to haunt the poor developer who decides to reinvent
this particular wheel, as such statements are very common in database applications.
Getting statement order to match exactly is another extremely tricky problem.
It's unlikely you'll do a better job in the end than these mature solutions already
available. There are good reasons that all these replication packages end up being
more complicated than you might think is required for this sort of work—they can't
be any simpler and still work correctly.

Slony
One of the oldest and most mature PostgreSQL replication solutions, Slony is both a
complex and feature rich replication program; refer to http://slony.info/.

It's written in C and highly optimized for the form of replication it does. Much of the
development work on Slony is done by Afilias, who use Slony for both redundancy
and load scaling for a significant portion of the Internet Domain Name Service. It
aims at that reliability level.

Slony is a complicated program, which is reflected everywhere from initial setup
complexity to extensive monitoring requirements. Expect to devote a significant
amount of study to any Slony deployment. The return on that time investment is
quite a powerful replication solution with many years worth of thought put into
its feature set.

One of the limitations of Slony to be aware of is that every table it replicates needs
to have a primary or similar key field for it to operate over.

Chapter 14

[369]

Londiste
Londiste is a more recent queue based replication software driven by triggers that's
part of the SkyTools project set: http://pgfoundry.org/projects/skytools/

It's one of the database applications written to support scaling up database operations
at Skype. Relative to Slony, Londiste has two highly visible advantages. The first is
that it targets a smaller feature set and is therefore less complicated to set up. It also
has abstracted away the concept of transporting changes from the master to the slaves
a bit more cleanly. The Londiste design is based on a generic queue library that is less
coupled to the underlying data transport mechanism used in Slony.

Another advantage for Londiste is that it requires minimal locking in order to
replicate. Slony has a few situations you might run into where the exclusive table
locks are required. An example is moving a replication set from one node to another.

Given the way open source software works, where it's expected that you might end
up needing to read and perhaps change the source code to add-on software you
use, Londiste can also be easier to work with. If you need to get familiar with its
internals or make changes to Londiste, it's simpler to do so than it is to gain similar
competence with the Slony source code.

Read scaling with replication queue software
When using Slony, Londiste, similar statement based replication software, or even
Streaming Replication plus Hot Standby, each of your slaves is going to lag a bit
behind the master. If your application can support running queries against that
slightly out of date information, it's straightforward to put a load balancing program
such as pgpool-II in front of the master and a set of slave nodes in order to scale
up reads.

This replication approach is also very good for maintaining autonomous remote
servers. You might put servers in multiple cities and the application reads against
the closest copy of the data, as a way to decrease load on any one server.

More information about how pgpool-II works for this purpose was covered in the
previous chapter.

Special application requirements
All of the solutions covered so far are master/slave solutions that, while
asynchronous, they expect fairly tight contact between all the database nodes. For
example, the master in a Hot Standby deployment will eventually run out of disk
space and crash if it can't ship WAL files to the slaves it's feeding.

Scaling with Replication

[370]

Bucardo
One of the things most PostgreSQL replication solutions have in common is that they
have a single master node. Bucardo is instead a multi-master replication solution,
also implemented with triggers; refer to http://bucardo.org/.

Anytime you have more than one master, this introduces a new form of replication
problem. What do you do if more than one node modifies the same record? Solving
that is called conflict resolution in replication terminology. Bucardo provides a hook
for your application to figure out what to do in that case, after it does the heavy
lifting work on the main replication chore.

Bucardo is also very asynchronous. Instead of expecting that nodes are in constant
contact with one another as most database replication software does, Bucardo
allows a disconnected master to execute an arbitrary amount of work and then
resynchronize when connected to the rest of the network again. This makes it
particularly well suited to scenarios such as databases hosted on a mobile system.
A laptop might run the database server, synchronize before leaving for a trip, then
update in both directions with all the changes made when it returns to the office.

Bucardo probably isn't the right solution for scaling upwards using load balancing,
and it's not a replication solution appropriate for most high-availability failover
requirements. But it can be appropriate for splitting load among servers in multiple
locations, particularly if the links between them are unreliable—a situation that
Warm Standby and Slony/Londiste don't handle particularly well.

pgpool-II
The replication features of pgpool and pgpool-II work quite differently than the
rest of the programs covered here. They are implementations of statement-based
middleware. This means that they serve as an intermediate proxy server between
your application and the database, translating the statements executed into the
appropriate ones for each of the destinations. It can provide synchronous replication
as just one of its benefits; refer to http://pgpool.projects.postgresql.org/.

pgpool-II works in one of several modes that include connection pooling, replication,
master/slave, and parallel query, some of which can be combined to be active at the
same time. It provides a useful toolkit of database scaling features, while suffering a
bit in complexity from its lack of focus. Other replication solutions that have a more
targeted feature set tend to be easier to set up and work with than pgpool-II.

Chapter 14

[371]

Other interesting replication projects
There is a wide perception that since PostgreSQL hasn't ever shipped with a
complete replication solution (even the Streaming Replication in 9.0 requires some
external code support), its replication options are therefore weak. The opposite is
true—because the development community isn't focused on a single replication
solution. There are actually so many viable options that just describing them all
is a chore. The programs listed in this section don't have the general developer
mindshare that the ones already covered do. But most of them have a very specific
type of replication problem than they solve better than any of the other alternatives.

Mammoth Replicator: Rather than derive statement changes from triggers,
Mammoth instead modifies the PostgreSQL source code to generate them.
The need for a customized PostgreSQL makes it inappropriate for some
uses. If you need statement replication but can't afford the overhead and
complexity of needing triggers to derive them, Mammoth is a mature
solution to that problem; refer to http://www.commandprompt.com/
products/mammothreplicator/

PgCluster: Synchronous master-master replication solution developed
using customized PostgreSQL code. Applications that need true synchronous
transactions, where commits either happen on both nodes or not at all,
might find PgCluster appropriate for that need. PgCluster requires
modifications to the PostgreSQL source code. It's available in both
commercial and the open source releases. Usually their open source version
lags behind the release schedule of the main PostgreSQL project; refer to
http://pgcluster.projects.postgresql.org/

Postgres-XC: Most replication solutions fail to address scaling up write
performance. It's rarely as important as scaling up reads and is a much
harder problem to deal with. Postgres-XC attacks that problem head-on by
building a fully distributed cluster of nodes that provides near linear write
scaling. The software is both very complicated and still fairly new, and as of
the point this is being written it isn't a complete feature nor considered stable
for generic workloads yet; it only handles relatively simple work; refer to
http://sourceforge.net/projects/postgres-xc/

Rubyrep: Similar to Bucardo, it's an asynchronous replication solution that
can handle multiple masters. As a fairly new piece of software, it still has
a fairly simple learning curve and is being actively developed, but isn't yet
very mature outside of its originally targeted application types; refer to
http://www.rubyrep.org

•

•

•

•

Scaling with Replication

[372]

Golconde: A queue-based data distribution system, Golconde aims to
scale upward database workloads by handling the chores normally done
by replication software at the application level instead. Rather than derive
transactions from what's in the database itself, it aims to be a database aware
transaction passing mechanism, using one of the many generic Message
Queue Solutions available; refer to http://code.google.com/p/golconde/

The number of external projects is expected to shrink following the release of
PostgreSQL 9.0, due to its internal Streaming Replication with associated Hot
Standby query taking over, as the obvious built-in way to handle some types of
replication. This will be increasingly true after a future version, likely 9.1, integrates
in synchronous replication features; this feature just missed being included in 9.0.

Summary
Replication is very much an area where there is no "one-size fits all" solution. You
need to match the solution chosen to what your specific problems and prioritization
are. The main replication options break down based on what method they use
to replicate and whether that replication is synchronous or not:

Program Replication Method Synchronization
WAL Shipping Master/Slave Asynchronous
Slony Master/Slave Asynchronous
Londiste Master/Slave Asynchronous
Mammoth Master/Slave Asynchronous
Bucardo Master/Slave or Master/Master Asynchronous
Rubyrep Master/Slave or Master/Master Asynchronous
PgCluster Master/Master Synchronous
Postgres-XC Master/Master Synchronous
pgpool-II Statement-based middleware Synchronous

•

Chapter 14

[373]

The main difference between the various Master/Slave solutions is how the database
changes are derived.

Hot Standby in PostgreSQL 9.0 allows running queries against the type of
standby databases used in early versions, only for high availability failover.
The Write-Ahead Log used for creating standby databases logs block
changes, and can only be used to make a complete copy of a database
cluster, not a subset.
Using log shipping replication will result in some archiving lag between
the standby and the master, which can be minimized (but not completely
avoided) in PostgreSQL 9.0 by using the Streaming Replication feature.
A Hot Standby system can only be tuned for quick failover, long running
queries, or minimal impact on the master. But you can only prioritize any
two of those three at a time.
Replicating database statements instead is more flexible and allows features
such as version upgrades, but some statements don't replicate easily and this
approach has higher overhead than Write-Ahead Log shipping.
Slony and Londiste are both mature solutions for extracting statement
updates using triggers and shipping the results to some number of
additional live database systems.
pgpool-II can be used to do load balancing across multiple read-only slaves,
as well as some forms of synchronous replication.
Bucardo supports adding multiple database masters whether or not the
systems are connected all the time.
There are many additional replication tools for PostgreSQL available that
target specific feature sets not covered by the more popular packages.

•

•

•

•

•

•

•

•

•

Partitioning Data
As databases grow, it's common to have a table or two become unmanageably
large. If the table itself is much larger than physical memory, and even its indexes
stop fitting comfortably, query execution time will escalate. One way you can deal
with large tables is to partition them, which breaks the table into a series of smaller,
related tables instead. You don't have to change your application, just keep querying
the same table. But when the query can be answered just using a subset of the data,
this optimization can occur, rather than scanning the whole thing.

Table range partitioning
Returning to the Dell Store 2 example database used in Chapter 10, Query Optimization,
consider the structure of the orders table:

dellstore2=# \d orders;

Table "public.orders"

 Column | Type | Modifiers

-------------+---------------+--------------------------------

 orderid | integer | not null default nextval('orders_orderid_
seq'::regclass)

 orderdate | date | not null

 customerid | integer |

 netamount | numeric(12,2) | not null

 tax | numeric(12,2) | not null

 totalamount | numeric(12,2) | not null

Indexes:

 "orders_pkey" PRIMARY KEY, btree (orderid)

 "ix_order_custid" btree (customerid)

Partitioning Data

[376]

Foreign-key constraints:

 "fk_customerid" FOREIGN KEY (customerid) REFERENCES
customers(customerid) ON DELETE SET NULL

Referenced by:

 TABLE "orderlines" CONSTRAINT "fk_orderid" FOREIGN KEY (orderid)
REFERENCES orders(orderid) ON DELETE CASCADE

Imagine that after many years of operation, the store has received so many orders
that queries against this table are unwieldy. The usual rule of thumb thresholds for
considering table partitioning are when an individual table is larger than the total
amount of memory in the server, or when it's reached 100 million rows.

Determining a key field to partition over
There are two potential ways that you could split this data into smaller pieces. The
first would be to partition the table into sections based on the orderid field. This is
probably what a real-world deployment would need to do here, because if the orders
table is too large the orderlines table would be even larger. Both tables could
usefully be partitioned by orderid.

However, imagine that orders are only kept for a period of time—perhaps a couple
of years. Older orders could therefore be deleted in that situation. The problem with
mass deletion in PostgreSQL is that it leaves a lot to be cleaned up after. First, you'll
need to vacuum the table to mark the deleted rows as dead. This might return space
to the operating system, but it's quite possible it will not. You can also end up with
bloated indexes from this usage pattern, if data from various time periods is mixed
together in the same data block.

If the orders table were partitioned by the orderdate field, there's another way to
deal with removing old orders. You can just DROP the partitions containing the old
data instead. Because this particular pattern is so common—timestamp ordered
data where the old sections are dropped to keep access times reasonable on newer
ones—the example we'll walk through here will partition by the date the orders
were placed.

Another important part of partitioned design is that in order to benefit from splitting
the table into pieces, queries need to run against a useful subset of the data. You
should consider what fields are being used in the WHERE clauses for queries against
the table as part of deciding which field is the right one to split it over.

Chapter 15

[377]

Sizing the partitions
A useful initial step to breaking a table into partitions is to figure out the range of
data it contains, relative to the candidate field, and how large it is:

SELECT min(orderdate),max(orderdate) FROM orders;

 min | max

------------+------------

 2004-01-01 | 2004-12-31

SELECT relname,relpages FROM pg_class WHERE relname LIKE 'orders%' ORDER
BY relname;

 relname | relpages

--------------------+----------

 orders | 100

 orders_orderid_seq | 1

 orders_pkey | 29

This is obviously too small to be worth partitioning, but for a demonstration sample
it's large enough to demonstrate how splitting the table would look. Since there's a
year of data here, breaking that into month-sized pieces would be appropriate.

List partitioning
The example here, and the pattern you're most likely to deploy, uses range
partitioning. This is where you provide a non-overlapping range of values that each
partition uniquely includes. It's also possible to partition based on an explicit list of
values that direct which partition a value goes into. For example, if you had queries
against the customers table that were routinely targeted at specific states, you might
partition based on that:

CHECK (state IN ('AK', 'AL', 'AR','AZ'))

CHECK (state = 'CA')

Such that populous states like California (CA) have their own partition.

Note whether a partition is a range or a list is a choice of descriptive terminology.
There's no syntax difference between the two, and to the query planner they're all
just constraints that a value is or isn't inside of.

Partitioning Data

[378]

Creating the partitions
Partitioning in PostgreSQL is based on the database's table inheritance feature. This
allows a table to have children that inherit all of its columns. For this sample, a
partition is needed for each month that inherits from the main orders table:

CREATE TABLE orders_2004_01 (

 CHECK (orderdate >= DATE '2004-01-01' and orderdate < DATE '2004-02-
01')

) INHERITS (orders);

…

CREATE TABLE orders_2004_12 (

 CHECK (orderdate >= DATE '2004-12-01' and orderdate < DATE '2005-01-
01')

) INHERITS (orders);

But only the column structure is inherited. You'll need to add indexes, constraints,
and adjust permissions on each individual partition to match the master table. The
output from psql \d for the table, as shown for the preceding orders table, can be
a helpful guide as to what all of this is.

Each partition needs the same primary key:

ALTER TABLE ONLY orders_2004_01

 ADD CONSTRAINT orders_2004_01_pkey PRIMARY KEY (orderid);

…

ALTER TABLE ONLY orders_2004_12

 ADD CONSTRAINT orders_2004_12_pkey PRIMARY KEY (orderid);

This will create an index by orderid as well. A manual index on customerid is also
needed:

CREATE INDEX ix_orders_2004_01_custid ON orders_2004_01 USING btree
(customerid);

...

CREATE INDEX ix_orders_2004_12_custid ON orders_2004_12 USING btree
(customerid);

Each order also contains a foreign key constraint to ensure the customer referenced
is valid. Those need to be applied to each partition:

ALTER TABLE ONLY orders_2004_01

 ADD CONSTRAINT fk_2004_01_customerid FOREIGN KEY (customerid)
REFERENCES customers(customerid) ON DELETE SET NULL;

…

Chapter 15

[379]

ALTER TABLE ONLY orders_2004_12

 ADD CONSTRAINT fk_2004_12_customerid FOREIGN KEY (customerid)
REFERENCES customers(customerid) ON DELETE SET NULL;

The other constraint involved here is actually against the orderliness table, confirming
that each order exists. So long as we're careful to never remove an order while
working on the partitioning, that constraint can stay in place without modifications. If
the table were being dumped and reloaded, you'd have to drop that constraint while
that was going on, lest the constraint be violated and cause a problem.

Redirecting INSERT statements to the
partitions
Now that the structure is present, the next step is to make rows inserted into the
parent table, go into the appropriate partition. The recommended way to do this
is with a trigger function:

CREATE OR REPLACE FUNCTION orders_insert_trigger()

RETURNS TRIGGER AS $$

BEGIN

 IF (NEW.orderdate >= DATE '2004-12-01' AND

 NEW.orderdate < DATE '2005-01-01') THEN

 INSERT INTO orders_2004_12 VALUES (NEW.*);

 ELSIF (NEW.orderdate >= DATE '2004-11-01' AND

 NEW.orderdate < DATE '2004-12-01') THEN

 INSERT INTO orders_2004_11 VALUES (NEW.*);

...

 ELSIF (NEW.orderdate >= DATE '2004-01-01' AND

 NEW.orderdate < DATE '2004-02-01') THEN

 INSERT INTO orders_2004_01 VALUES (NEW.*);

 ELSE

 RAISE EXCEPTION 'Error in orders_insert_trigger(): date out of
range';

 END IF;

 RETURN NULL;

END;

$$

LANGUAGE plpgsql;

Partitioning Data

[380]

Note how the function starts with rows at the end of the range (December). Starting
with the latest defined partition is a recommended practice, because in most business
scenarios with a split by date, that's the partition you are most likely to be inserting
new data into.

Once the function is created, it needs to be called each time a row is inserted:

CREATE TRIGGER insert_orders_trigger

 BEFORE INSERT ON orders

 FOR EACH ROW EXECUTE PROCEDURE orders_insert_trigger();

You will probably end up needing to update the actual function here to reflect new
partitions at some point, but that doesn't require creating the trigger again. It will
use the new function automatically once it's replaced.

Dynamic trigger functions
The orders_insert_trigger() function shown previously is static; the statements
it executes are the same every time. As you might expect from reading the code, the
actual execution time will vary based on which partition you are inserting into, and
maintaining that trigger code is both monotonous and error prone. It's possible to
remove the maintenance chore by just directly computing the partition required:

CREATE OR REPLACE FUNCTION orders_insert_trigger()

RETURNS TRIGGER AS $$

DECLARE

 ins_sql TEXT;

BEGIN

 ins_sql :=

 'INSERT INTO orders_'|| to_char(NEW.orderdate, 'YYYY_MM') ||

 '(orderid,orderdate,customerid,net_amount,tax,totalamount)
 VALUES ' ||

 '('|| NEW.orderid || ',' || quote_literal(NEW.orderdate) || ','
 || NEW.customerid ||','||

 NEW.netamount ||','|| NEW.tax || ',' || NEW.totalamount || ')'

 ;

 EXECUTE ins_sql;

 RETURN NULL;

END

$$;

Chapter 15

[381]

The execution time of this version is constant and predictable, whereas the static
version's runtime will depend on how many comparisons happen before it finds the
right partition to insert into. In return for that and getting rid of needing to keep the
more verbose static version up-to-date, there are a few downsides to this approach
though. You have to be careful to handle quoting and NULL values here. Because of
how the statement is constructed and then executed as text, this will be slower than
the static version, at least when the static one has the active partition as the beginning
of its comparison list.

A more subtle downside is that dynamically generating these statements will then
accept bad data pointing towards partitions that don't exist, without the clear
error message the static version gives in that case. Before using this approach on a
production system, you should rewrite this example procedure to catch insertion
errors, because rows inserted into partitions that don't exist are still going to fail.

Partition rules
There is actually another way to implement the partition redirection being done in
the trigger here. PostgreSQL has a feature called rules that allows substituting an
alternate command for one you want to change. Here is an example:

CREATE RULE orders_2004_01_insert AS

ON INSERT TO orders WHERE

 (orderdate >= DATE '2004-01-01' AND orderdate < DATE '2004-02-01')

DO INSTEAD

 INSERT INTO orders_2004_01 VALUES (NEW.*);

Using a rule has the potential upside that bulk inserts can be processed more
efficiently than using a trigger. As such, benchmarks that focus on that particular
measurement might suggest it's the faster approach. But the rule approach has
higher overhead for an individual insert, which is what you're probably going to
do more, over the life of the database. And since the number of rules and therefore
the rules overhead is proportional to the number of partitions, with no dynamic
approach available, the performance of a rules-base partitioning implementation
can become quite high once you have many partitions.

A final blow against using rules is that COPY doesn't follow them. If you're using
INSERT triggers instead, this work fine. There's very little to recommend rules
about partitions and there are several reasons you might want to avoid them. The
main reason I bring them up at all is to point out their issues, and to suggest you be
skeptical of any recommendation in favor of using them in PostgreSQL.

Partitioning Data

[382]

Empty partition query plans
At this point, the partitions are all in place, but the data is still in the parent table.
Since these are new tables the optimizer doesn't have any statistics on them until
ANALYZE is run. Let's do that and see what a query against the orders table looks
like now:

ANALYZE;

EXPLAIN ANALYZE SELECT * FROM orders;

QUERY PLAN

 Result (cost=0.00..456.40 rows=23640 width=45) (actual
time=0.064..99.059 rows=12000 loops=1)

 -> Append (cost=0.00..456.40 rows=23640 width=45) (actual
time=0.059..58.873 rows=12000 loops=1)

 -> Seq Scan on orders (cost=0.00..220.00 rows=12000 width=36)
(actual time=0.056..22.522 rows=12000 loops=1)

 -> Seq Scan on orders_2004_01 orders (cost=0.00..19.70
rows=970 width=54) (actual time=0.001..0.001 rows=0 loops=1)

 -> Seq Scan on orders_2004_02 orders (cost=0.00..19.70
rows=970 width=54) (actual time=0.001..0.001 rows=0 loops=1)

...

 -> Seq Scan on orders_2004_12 orders (cost=0.00..19.70
rows=970 width=54) (actual time=0.002..0.002 rows=0 loops=1)

Queries are still running against the entirety of the original orders table, and they're
also running against each of the partitions. Note that since there are no rows in
them, the database doesn't actually have useful row estimates for the partitions. It's
guessing there are 970 rows in each, so until some data shows up in them this will
throw off plans against the table.

Date change update trigger
One of the optional things usually left out of PostgreSQL partitioning examples is an
update trigger. Consider the case where you update a row and change the date; this
could require relocating it to another partition. If you want to allow for this case, you
need to install a trigger into each partition:

CREATE OR REPLACE FUNCTION orders_2004_01_update_trigger()

RETURNS TRIGGER AS $$

BEGIN

 IF (NEW.orderdate != OLD.orderdate) THEN

Chapter 15

[383]

 DELETE FROM orders_2004_01

 WHERE OLD.orderid=orderid;

 INSERT INTO orders values(NEW.*);

 END IF;

 RETURN NULL;

END;

$$

LANGUAGE plpgsql;

CREATE TRIGGER update_orders_2004_01

 BEFORE UPDATE ON orders_2004_01

 FOR EACH ROW

 EXECUTE PROCEDURE orders_2004_01_update_trigger();

As in the insert trigger case, you could instead write a dynamic version of both
the DELETE and INSERT statement. Then you can attach the same function to every
partition. This has the same potential benefits and concerns as in the dynamic
INSERT trigger shown earlier.

Starting in PostgreSQL 9.0, it's possible to write UPDATE triggers that
are tied to a specific column changing. This technique could be used
to slim down and speed up this example, by writing something that
only executes when orderdate is modified.

When showing the rest of the examples, it's assumed that you did not install this
optional form of trigger. Few applications update data that impacts their primary
key afterwards as it's dangerous, and you can always direct data to a specific
partition yourself if you need to make such a change manually.

Live migration of a partitioned table
If you executed the creation of partition, index, and trigger functions in this chapter
against a live Dell Store 2 installation, you've now got all of the actual data in the
parent orders table, with a number of empty partitions. This is typically how a live
migration to partitions would prefer to happen too. The other option is to dump the
table, create the partition structure, then load the data back in again—which involves
some downtime.

Partitioning Data

[384]

There is another way though. Consider the update trigger again. What if you
installed one of those against the parent table? You could then migrate to the
partitioned structure just by updating every row. Here's what the code looks
like for that:

CREATE OR REPLACE FUNCTION orders_update_trigger()

RETURNS TRIGGER AS $$

BEGIN

 DELETE FROM orders WHERE OLD.orderid=orderid;

 INSERT INTO orders values(NEW.*);

 RETURN NULL;

END;

$$

LANGUAGE plpgsql;

CREATE TRIGGER update_orders

 BEFORE UPDATE ON orders

 FOR EACH ROW

 EXECUTE PROCEDURE orders_update_trigger();

When doing this, the paranoid approach is to wrap all of the changes into a
transaction block with BEGIN/COMMIT. That way, if there's a problem you can
execute ROLLBACK and make all the changes revert. You'll either migrate all the data
successfully or not do anything. This approach was used to debug the preceding
code; each early attempt that didn't result in something that looked like sane data
was just rolled back. Here's a sample session that succeeds:

dellstore2=# BEGIN;

BEGIN

dellstore2=# SELECT count(*) FROM orders;

 count

 12000

dellstore2=# SELECT count(*) FROM orders_2004_01;

 count

 0

dellstore2=# SELECT count(*) FROM orders_2004_12;

 count

 0

Chapter 15

[385]

dellstore2=# UPDATE orders SET orderid=orderid;

UPDATE 0

dellstore2=# SELECT count(*) FROM orders_2004_01;

 count

 1000

dellstore2=# SELECT count(*) FROM orders_2004_12;

 count

 1000

dellstore2=# SELECT count(*) FROM orders;

 count

 12000

dellstore2=# COMMIT;

COMMIT

Counting the number of rows is a good way to confirm all of the data was migrated
over as expected. You can see that the stating configuration had 12,000 rows in the
parent table and none in the partitions, while the ending one has 1000 rows in each
of the 12 partitions. One small quirk to be aware of here—the form of UPDATE trigger
being used here doesn't actually report that it did anything. Note how it shows
0 rows processed, even though it obviously executed against all of them.

After the commit is done and any active sessions from before then have ended, you'll
want to remove all the dead rows related to the original data. VACUUM isn't enough
to clean this up, because all it will do is mark those rows as free space. This doesn't
help you if you don't ever expect to add more rows to this parent table ever again.
One easy way to fully clean the old parent is with CLUSTER, which should produce
a new, tiny table from any data that's left behind (zero in this case), and then drop
the original version with all the dead rows. And once this conversion is done and the
data verified, this trigger is redundant and mainly apt to introduce confusion. It's
better to drop it than to keep it around once it's not needed anymore:

CLUSTER orders;

DROP TRIGGER update_orders ON orders;

DROP FUNCTION orders_update_trigger();

Partitioning Data

[386]

Partitioned queries
Now that the data is in the partitions, it's a good idea to update statistics. It's also
important to confirm that the constraint_exclusion feature is active:

ANALYZE;

SHOW constraint_exclusion;

 constraint_exclusion

 partition

Constraint exclusion allows the query planner to avoid including partitions in a
query when it can prove they can't provide useful rows to satisfy it. In PostgreSQL
8.4 and later, the default value of partition turns this on, when partitioned tables
are referenced, and off otherwise. In earlier versions, it defaults to off. You will have
to turn the parameter on, once you start using partitions in earlier versions if you
expect them to work properly.

Queries against the whole table execute the same as before the rows were relocated,
except now the statistics are good for everything except the parent table:

EXPLAIN ANALYZE SELECT * FROM orders;

QUERY PLAN

 Result (cost=0.00..1292.00 rows=12001 width=36) (actual
time=4.453..102.062 rows=12000 loops=1)

 -> Append (cost=0.00..1292.00 rows=12001 width=36) (actual
time=4.445..62.258 rows=12000 loops=1)

 -> Seq Scan on orders (cost=0.00..400.00 rows=1 width=36)
(actual time=4.153..4.153 rows=0 loops=1)

 -> Seq Scan on orders_2004_01 orders (cost=0.00..77.00
rows=1000 width=36) (actual time=0.287..1.971 rows=1000 loops=1)

 -> Seq Scan on orders_2004_02 orders (cost=0.00..77.00
rows=1000 width=36) (actual time=0.267..2.045 rows=1000 loops=1)

...

 -> Seq Scan on orders_2004_12 orders (cost=0.00..69.00
rows=1000 width=36) (actual time=0.160..1.474 rows=1000 loops=1)

Chapter 15

[387]

Now for an example that shows the value of partitions. Consider a query that only
looks for orders on a particular day:

EXPLAIN ANALYZE SELECT * FROM orders WHERE orderdate='2004-11-16';

QUERY PLAN

 Result (cost=0.00..471.50 rows=36 width=36) (actual time=1.437..2.141
rows=35 loops=1)

 -> Append (cost=0.00..471.50 rows=36 width=36) (actual
time=1.432..2.017 rows=35 loops=1)

 -> Seq Scan on orders (cost=0.00..400.00 rows=1 width=36)
(actual time=1.189..1.189 rows=0 loops=1)

 Filter: (orderdate = '2004-11-16'::date)

 -> Seq Scan on orders_2004_11 orders (cost=0.00..71.50 rows=35
width=36) (actual time=0.238..0.718 rows=35 loops=1)

 Filter: (orderdate = '2004-11-16'::date)

 Total runtime: 2.276 ms

Instead of executing against every order, as this query would have done before, now
it only has to consider ones in the 2004-11 partition and a brief scan of the empty
parent table. The optimizer can prove that none of the others contain rows with this
value by considering their respective CHECK constraints.

In this data set, much like many real-world ones, the orderid key is highly
correlated with the creation date. Watch how the following orderid range
scan is executed:

dellstore2=# EXPLAIN ANALYZE SELECT * FROM orders WHERE orderid<2000;
QUERY PLAN

 Result (cost=4.26..249.95 rows=2011 width=36) (actual
time=1.113..19.802 rows=1999 loops=1)

 -> Append (cost=4.26..249.95 rows=2011 width=36) (actual
time=1.107..11.878 rows=1999 loops=1)

 -> Bitmap Heap Scan on orders (cost=4.26..8.27 rows=1
width=36) (actual time=0.821..0.821 rows=0 loops=1)

 Recheck Cond: (orderid < 2000)

 -> Bitmap Index Scan on orders_pkey (cost=0.00..4.26
rows=1 width=0) (actual time=0.648..0.648 rows=1999 loops=1)

 Index Cond: (orderid < 2000)

Partitioning Data

[388]

 -> Seq Scan on orders_2004_01 orders (cost=0.00..79.50
rows=1000 width=36) (actual time=0.281..2.298 rows=1000 loops=1)

 Filter: (orderid < 2000)

 -> Seq Scan on orders_2004_02 orders (cost=0.00..79.50
rows=1000 width=36) (actual time=0.276..2.487 rows=999 loops=1)

 Filter: (orderid < 2000)

 -> Index Scan using orders_2004_03_pkey on orders_2004_03
orders (cost=0.00..8.27 rows=1 width=36) (actual time=0.015..0.015
rows=0 loops=1)

 Index Cond: (orderid < 2000)

 -> Index Scan using orders_2004_04_pkey on orders_2004_04
orders (cost=0.00..8.27 rows=1 width=36) (actual time=0.007..0.007
rows=0 loops=1)

 Index Cond: (orderid < 2000)

...

 -> Index Scan using orders_2004_12_pkey on orders_2004_12
orders (cost=0.00..8.27 rows=1 width=36) (actual time=0.006..0.006
rows=0 loops=1)

 Index Cond: (orderid < 2000)

 Total runtime: 23.293 ms

The optimizer isn't smart enough to prove that no rows matching the orderid
value appear in the higher numbered partitions. It does estimate that only one row
might match from these though, which is enough to have it do an Index Scan
on those partitions, to quickly exclude them from the output. Meanwhile, the
partitions that do have useful data are sequentially scanned.

In the original unpartitioned table, the optimizer would have needed to choose
between a Sequential or Index Scan for the entire data set. Neither, would have
produced a very good plan, given this query returns about 16% of the data. You
might recall from Chapter 10, Query Optimization that the transition point between the
two types of scans is around 20%, which means a query returning 16% is going to
be expensive to execute relative to the number of rows produced with either option.
This is a common improvement when partitioning data; it lets the portions of the
data set reduce in size enough that a Seq Scan becomes a more viable and efficient
means to query subsets of the data.

Chapter 15

[389]

Creating new partitions
When you have live data coming in, you can expect that you'll one day need to add
new partitions. The example here is only good for 2004 data. Once 2005 starts, inserts
into the orders table with an orderdate from that year are going to fail.

You need to consider two things when the active partition is about to move forward
into the next value. The first is whether your trigger function will support it. In cases
where that's a static block of code, with a series of hard-coded comparisons, you may
need to update it. The second thing is that the partition needs to be created and all its
attributes properly set.

Scheduled creation
The simplest way to deal with creating the new partitions is to write a program
that adds them, then make sure you're always at least one partition ahead of what's
needed. On UNIX derived systems this is typically scripted into a cron job that
executes more frequently than the partition changes, for example, runs weekly
given a monthly partitioning scheme. The Windows Task Scheduler could be
used similarly.

Dynamic creation
At that point, you might be thinking that there's no need for scheduling partition
creation. Why not just create them dynamically as needed? Indeed, that is an option.
But there are a few bits of not necessarily obvious complexity to be wary of.

When two sessions both notice a partition is missing at the same time, it's extremely
easy to end up with a race condition in the code, where both try to create it, and
transaction deadlock is a common side effect of problems in this area.

Sometimes bad data will come into your table. It might come from far in the past
or the future relative to right now. You might not want to create a partition for all
of those situations.

There are many pieces to get right for partitioning to work. In addition to creating
the partition, you need to add the right indexes, constraints, and permissions to the
table. Allowing simple users who are inserting data, enough power to set up all
these things introduces a class of security concerns better avoided, too.

Partitioning Data

[390]

Partitioning advantages
There are quite a few performance related improvements that partitioning this way
provides. The average number of index blocks you'll have to navigate in order to
find a row goes down, because the first level split there is pushed towards being the
query planner's job instead. And as mentioned already, having smaller blocks of
your data might alter when the database can consider a sequential scan of a range
a useful technique.

There are some maintenance advantages too. You can DROP an individual partition, to
erase all of the data from that range. This is a common technique for pruning historical
data out of a partitioned table, one that avoids the VACUUM cleanup work that DELETE
leaves behind. If you have monthly data, and you only keep a certain number of
months at a time, once a new month starts you just DROP the oldest partition.

Another advantage is that REINDEX operations will happen in a fraction of the time it
would take for a single giant index to build. If you only have limited time windows
where a REINDEX is practical, you might be able to squeeze in rebuilding an index
or two during each of them, and eventually make your way through all of them. If
you're finding that a maintenance window big enough to REINDEX your whole table
just isn't available anymore, partitioning might get you back to where you can do it
again, a subset at a time.

Common partitioning mistakes
There are enough partitioning problems that people run into repeatedly that it's
worth mentioning, and the most common are as follows:

Not turning on constraint_exclusion and therefore always including
every partition.
Failing to add all the same indexes or constraints to each partition that
existed in the parent.
Forgetting to assign the same permissions to each child table as the parent.
Writing queries that don't filter on the partitioned key field. The WHERE clause
needs to filter on constants. A parameterized query will therefore not work
right at all, and functions that can change their value like CURRENT_DATE
will also optimize poorly. In general, keep the WHERE clauses as simple as
possible, to improve the odds the optimizer will construct the exclusion
proof you're looking for.

•

•

•

•

Chapter 15

[391]

Query overhead for partitioning is proportional to the number of partitions.
It's barely noticeable with only 10 or 20 partitions, but if you have hundreds
you can expect it to be significant. Keep the number of partitions to the two
digit range for best performance.
When you manually vacuum/analyze, these will not cascade from the
parent. You need to specifically target each partition with those operations.
Fail to account for out of range dates in the insert trigger. Expect bad data
will show up one day with a timestamp either far in the past or the future,
relative to what you have partitioned right now. Instead of throwing an
error, some prefer to redirect inserted rows from outside of the partitioned
range into a holding pen partition dedicated to suspicious data.

Another thing worth mentioning is that some people with "big database"
backgrounds tend to partition whether or not they need to, just because that's the
mindset their previous database work left them in. You have to put a fair amount of
work into a partitioned PostgreSQL deployment. Make sure there's a true need for
the partitions and a useful expected payback for the work, to justify spending time
on it first.

Horizontal partitioning with PL/Proxy
If splitting data among several sub-tables on a single server improves performance,
than surely splitting it similar among multiple servers would be even better, right?
That's the theory behind PL/Proxy, a procedural language specifically designed
to make that easier, refer http://pgfoundry.org/projects/plproxy/.

PL/Proxy was designed to fit the database scaling needs of Skype, which includes a
target of serving a billion users at once. When you have that kind of user base, you
just can't fit everyone on a single server.

The basic premise of PL/Proxy is that you first insulate access to the database behind
the database functions (also known as stored procedures). Let's say you want to grab
a username field that uniquely identifies a user. Rather than selecting it from a table,
instead you'd call a function that returns a username. This style of database design is
popular for other reasons too, because it allows refactoring the design of a database
with minimal application impact. So long as the function call "API" remains stable,
what it maps to in the database can be changed more easily.

The next thing to do is determine a way to break your workload up into pieces,
similar to how that decision is made for a single server partitioning. The main
difference is that you just need to identify a key field in most cases, and not figure
out how to map that to the underlying partitions; there is a standard, generic
approach that will likely work for you there.

•

•

•

Partitioning Data

[392]

Getting PL/Proxy up and running requires a few software installation steps that are
outside of PostgreSQL itself, and this chapter doesn't try and provide a complete
walkthrough of those. The goal here is more to provide you background about how
the program works sufficient, to know when it could be considered useful to your
scaling efforts, not to detail exactly how to set it up. An initial starter tutorial for the
details is available at the project's home page, refer http://plproxy.projects.
postgresql.org/doc/tutorial.html.

Hash generation
The standard practice for most PL/Proxy implementations is to partition, based
on the hashtext of the field you're splitting on, which allows splitting among a
number of nodes fairly without knowing the distribution of the data set in advance.
hashtext is a PostgreSQL-provided internal function that takes in any text input
and generates an integer as output with a hash code. If you AND the result at the bit
level, to only take the lowest few bits, this turns out to be a very quick and fair way
to distribute load among multiple systems. For this to work, the number of partitions
needs to be a power of 2 (2, 4, 8, 16, and so on) and then you Bitwise AND against
one less than that number. So for two partitions that's & 1, for four partitions it's & 3,
and so on. Here's what the output from it looks like for the first ten integers hashed
into four partitions:

SELECT s,hashtext(s::text) & 3 AS hash FROM generate_series(1,10) AS s;

 s | hash

----+------

 1 | 1

 2 | 2

 3 | 0

 4 | 0

 5 | 2

 6 | 0

 7 | 1

 8 | 0

 9 | 0

 10 | 3

Chapter 15

[393]

This shows you that there's a fairly equal distribution among the four possible
partition values (0,1,2,3) available in this subset. Look at the following count
of the various hash values for a larger subset:

SELECT hash,count(*) FROM (SELECT s,hashtext(s::text) & 3 AS hash FROM
generate_series(1,10000) AS s) AS q GROUP BY hash ORDER BY hash;

 hash | count

------+-------

 0 | 2550

 1 | 2411

 2 | 2531

 3 | 2508

This shows you how using a few bits from the hashtext can provide a very equal
split among partitions without any specific knowledge of your data.

The values returned by the hashtext function have changed
between PostgreSQL 8.3 and 8.4. If you're running an earlier
version than 8.4, you'll see a different output than the preceding
one. Upgrading such a system to a newer PostgreSQL version
also needs to respect that change—the resulting partition layout
will be different by default.

The only reason this approach isn't more popular for splitting up key ranges in single
node PostgreSQL partitioning, is that the planner doesn't know how to do constraint
exclusion based on the hashtext function.

Scaling with PL/Proxy
Given that hash-based distribution allows splitting among an arbitrary power of two
number of partitions, with relatively even load, PL/Proxy makes it straightforward
to split large independent tables among multiple nodes in a way that allows almost
unbounded scalability.

The key word there is independent. If in fact your queries commonly cross partition
boundaries, the query optimizer will not be able to help you generate good plans
for those. PL/Proxy calls can be configured to run on any available node or on
every node. If you need data from all of them, that's going to turn into a number of
independent queries that need to be assembled with UNION ALL in order to get the
full result. This may not execute as efficiently as if all the data were on a single node,
with a unified set of statistics.

Partitioning Data

[394]

If your application is such that it can be split in distinct, independent data sets,
one of the unique aspects of PL/Proxy scaling is that it works on both read and
write workloads. Many database scaling techniques only improve read scalability.
The fact that PL/Proxy-based scaling has worked for database expansion at heavy
PostgreSQL users Skype and myYearbook, shows how powerful a scaling technique
it can allow. If you believe your application may become large enough to need
this sort of approach, the main thing you need to get started on early is practice
insulating database access through functions. Once using that technique, whether the
result is then executed on a single server, or multiple ones using PL/Proxy, will be
mostly transparent to your application.

Sharding
Sharding is a form of horizontal partitioning and can be implemented in PostgreSQL
using PL/Proxy. Its main distinction is that sharding emphasises placing shared
data structures on every node, so that each of them can operate independently of one
another. Typically the data you'd want on every system are what's normally referred
to as "dimension", "lookup", or "fact tables" for your application, the pieces that are
common to every set of data. The idea is that you should approach a shared-nothing
architecture, where each sharded partition is self-sufficient for answering queries
related to the data it contains.

The complexity of a sharding style design includes things like how to co-ordinate
an update to those shared structures. The approach that makes sense there is very
application-specific. Using a standard replication approach to keep all the copies
up-to-date is a common design choice. The component in Skype's scaling stack to
handle that is their Londiste replication program. Like any asynchronous replication
solution, and like most sharded database deployments, this introduces an element
of database inconsistency where data is present in one database but not the rest. It's
easy to introduce a race condition into such a design if you're not careful. Also, if
an individual client moves between two copies of the database, they can run into
a disconcerting situation where they are moving forward and backward in time,
relative to changes made to the shared structures. You may need to code something
in your application to prefer a particular database's copy of the shared data, once
you've used it once in a session.

Sharding style database scaling is a useful refinement on standard horizontal
partitioning, but any time you have independent nodes sharing data there's
additional complexity and potential for application bugs. The sort of eventual
consistency guarantees you get are very different from the transactional ones a
database normally provides.

Chapter 15

[395]

Scaling with GridSQL
Another way you might be able to approach hash-based distribution among nodes
is using GridSQL, refer http://www.enterprisedb.com/community/projects/
gridsql.do.

Instead of putting the logic for what node to execute against directly into the
database, GridSQL provides a client that speaks to a node co-ordinator process
that handles that job. This process is all relatively transparent to you. The main
catch is that not all PostgreSQL features are available, and you need a client driver
compatible with GridSQL.

GridSQL uses its own parser, planner, and optimizer, accepting ANSI standard SQL
but not all of PostgreSQL's syntax. The driver interface for your applications to talk
to the database can look like a standard PostgreSQL one, but not everything a full
PostgreSQL application expects will be supported. In stark contrast to PL/Proxy
style scaling, instead of relying heavily on the database functions, GridSQL doesn't
support running them at all!

Right now the primary driver available is a Java JDBC level one. If you have a Java
application you want to scale across multiple nodes, GridSQL allows parallel query
against multiple servers, or even against multiple database instances on a single
server with many cores. And getting such a deployment working will be relatively
little work, compared to building something similarly complicated using most
other solutions for this problem. This architecture is also well suited for a sharded
configuration, where dimension tables are replicated across nodes to make it easy
for a single node to fully answer common queries.

This parallel query feature makes GridSQL most appropriate for building data
warehouse style database applications, where long query time is the main
performance issue. It's not aimed to accelerate write-heavy transactional loads.

If you have a straightforward Java application and don't need database functions,
GridSQL can provide a useful way to scale data warehouse style loads onto multiple
cores or nodes. But if you're using other client programming languages, or doing
sophisticated database-side programming, it would be much harder to convert
your application to using its approach.

Partitioning Data

[396]

Summary
Every form of partitioning in PostgreSQL currently requires a moderate amount
of manual setup. Accordingly, it's not something you want to do by default. There
needs to be sufficient justification in terms of expected improvement in scalability
before partitioning your tables will make sense. When it is effective, partitioning can
dramatically speed up some types of queries against the database, improving overall
system efficiency.

Partitioning large tables normally makes sense when they or the active
portion of a database as a whole exceeds the total amount of memory
in the server.
Choosing what key field to partition over needs to carefully review all
queries made against the table, to make sure they are selective against
that field.
Individual partitions need to be created manually, along with having any
constraints, indexes, or permissions against the parent applied to them
as well.
Trigger functions are the easiest way to redirect INSERT, UPDATE, or DELETE
statements to move the resulting row to the correct partition.
It's possible to do a live migration of data from an existing unpartitioned
table to a partitioned one, albeit with a temporary doubling of the disk space
used by the table.
Query constraint_exclusion needs to be turned on for partitioning
to work.
Queries need to use simple WHERE clauses that compare against the key field
in order for constraint exclusion to work.
Partitioning improves queries by reducing the number of rows considered,
lowering index sizes, and allowing sequential scans where only an index
scan would have been appropriate before.
Some database maintenance operations might be improved by partitioning.
You'll get quicker individual REINDEX times and the ability to DROP old
partitions to remove them almost instantly, instead of using DELETE against
all of the old rows.

•

•

•

•

•

•

•

•

•

Chapter 15

[397]

You need to be vigilant in creating partitions before they are used. This is
normally a scheduled operation, because trying to create the partitions at
insert time is tough to do correctly.

The upper limit on the number of partitions you can use effectively is tens
of them. Anything using significantly more than 100 partitions can expect
to suffer some from the overhead of needing to evaluate so many partition
constraints whenever a query executes.
PL/Proxy can be used to split data among multiple nodes effectively, for
nearly infinite expansion possibilities. It can be used to build applications
using the sharding approach popular for shared-nothing deployments too.
GridSQL can also split data among multiple nodes, and it includes enough
database components to handle accelerating queries to execute in parallel on
multiple nodes. But the program only has good support for Java applications,
and both functions and PostgreSQL-specific features may not be available.

•

•

•

•

Avoiding Common Problems
Beyond the expected day-to-day setup and design issues, there are some recurring
issues PostgreSQL administrators and developers run into regularly that don't have
really obvious answers. PostgreSQL has "Frequently Asked Questions" lists available
at http://wiki.postgresql.org/wiki/Category:FAQ, and you may find reading
them interesting, even though some of those topics are covered in this chapter too.

Bulk loading
There are two slightly different types of bulk data loads you might want to do.
The first type, and main focus of this section, is when you're initially populating
an empty database. Sometimes you also need to do later bulk loads into tables that
are already populated. In that case, some of the techniques here, such as dropping
indexes and constraints, will no longer be applicable. And you may not be able to
get quite as aggressive in tuning the server for better loading speed, when doing
incremental loading. In particular, options that decrease integrity for the whole
server, such as disabling fsync, only make sense when starting with a blank system.

Loading methods
The preferred path to get a lot of data into the database is using the COPY command.
This is the fastest way to insert a set of rows. If that's not practical, and you have
to use INSERT instead, you should try to include as many records as possible per
commit, wrapping several into a BEGIN/COMMIT block. Most applications find that
between 100 and 1000 rows per commit gives the majority of the performance
possible in doing batch inserts, but it's still not going to be as fast as COPY.

Avoiding Common Problems

[400]

From slowest to fastest, this is the usual ranking:

1. INSERT a single record at once.
2. INSERT larger blocks of records at one time.
3. Use a single COPY at a time. This is what a standard pg_restore does.
4. Multiple INSERT processes using larger blocks in parallel.
5. Use multiple COPY commands at once. Parallel pg_restore does this.

Note that getting multiple processes doing insert or copy at once can be harder
than expected in some programming languages. Process or threading limitations
in the programming language can end up being the bottleneck, instead of the
database itself.

Also be aware that if you are using a regular programming language for this job, you
may need to be very explicit about tuning off per-transaction autocommit in order to
get proper batch insert behavior. It's also useful in some cases to use PREPARE to set
up the INSERT statement, just to lower parsing overhead. Unlike a query, there's little
potential for the plan to degrade when you do that.

External loading programs
Another thing to be aware of is that COPY will abort all its work if it finds any error in
the input data. This can be frustrating if the bad row is near the end of a large input.
If you're importing from an external data source (a dump out of a non-PostgreSQL
database for example), you should consider a loader that saves rejected rows while
continuing to work anyway, like pgloader: http://pgfoundry.org/projects/
pgloader/. pgloader will not be as fast as COPY, but it's easier to work with on
dirty input data, and it can handle more types of input formats too.

Another loader useful for some special cases is pg_bulkload: http://pgbulkload.
projects.postgresql.org/ which can be even faster than straight COPY. This
is due to very aggressive performance features like bypassing the WAL (which
is possible in some cases, covered later, with regular COPY), and it also has some
features for handling bad data. pg_bulkload is a fairly invasive loader that requires
loading custom functions into the database, and as such it's a little more intense to
work with than the simpler, external only pgloader. Which makes more sense, or
whether straight COPY is fine, really depends on the cleanliness of your data and
exactly how fast you must have it loaded.

Chapter 16

[401]

Tuning for bulk loads
The most important thing to do in order to speed up bulk loads is to turn off any
indexes or foreign key constraints on the table. It's more efficient to build indexes
in bulk and the result will be less fragmented. Constraint checks are much faster
to check in bulk too.

There are a few postgresql.conf values that you can set outside of their normal
range specifically to accelerate bulk loads:

maintenance_work_mem: Increase to a much larger value than you'd
normally run your server with. 1 GB is not unreasonable on a server with
>16 GB of RAM nowadays. This speeds CREATE INDEX and ALTER TABLE
ADD FOREIGN KEY, presuming you've followed the advice mentioned earlier
to do those in a batch after loading.
checkpoint_segments: Much higher values than that would normally
be safe are acceptable here to spread out checkout I/O, because crash
recovery time and disk space aren't so important before the server goes
live. 128-256 are common values for bulk loading. Similarly, increasing
checkpoint_timeout can also be advisable, with values of 30 minutes not
being unreasonable in this context.
autovacuum: Having periodic autovacuum does little but get in the way of a
standard bulk load, it's recommended to turn it off..
Wal_buffers: This can easily turn into a bottleneck on a bulk load. Setting
to the practical upper limit of 16 MB is a recommended practice.
synchronous_commit: If your bulk load is an all or nothing affair, there's
little downside to turning off synchronous commits, so that they are done in
larger batches instead. If you crash and lose some transactions as a result, it's
normally possible to just wipe out the last table being loaded and reload it
from scratch.
fsync: The only time that fsync is reasonable to consider turning it off is
when doing initial loading of a database. In that situation, the main downside
of no fsync—a database crash can lead to corruption—is normally not
fatal; just start over with the loading again. Disabling fsync is particularly
valuable on PostgreSQL 8.2 and earlier, before synchronous_commit was
available, and on hardware that doesn't include a non-volatile write cache. It
can make the difference between only loading a hundred records per second
and getting thousands instead.
vacuum_freeze_min_age: Lowering this parameter to 0 is appropriate,
if you're going to manually VACUUM the database before putting it into
production. It will maximize the amount of database cleanup such a
VACUUM can do.

•

•

•

•

•

•

•

Avoiding Common Problems

[402]

Some of these presume that you're doing a fairly dumb loading routine. If your
loading process involves any table cleaning procedure that does joins, you may need
to keep autovacuum in particular on in order for those to work efficiently. It might
be beneficial to increase work_mem as well in that situation. All of these memory
parameters can potentially be set to much higher values than normal during loading,
so long as you're not allowing clients to connect while loading is going on.

Skipping WAL acceleration
The purpose of the write-ahead log is to protect you from partially committed data
being left behind after a crash. If you create a new table in a transaction, add some
data to it, and then commit at the end, at no point during that process is the WAL
really necessary. If the commit doesn't happen, the expectation is that the entire table
is gone anyway. Accordingly, in recent PostgreSQL versions this particular case is
accelerated. A bulk load like the following:

BEGIN;

CREATE TABLE t …

COPY t FROM …

COMMIT;

It will not generate any WAL records by default, and therefore execute quicker.
You can get the same acceleration with a table that exists if you use TRUNCATE
to clear it out first.

However, if you have turned on the archive_command facility to feed WAL
segments to a PITR standby, this optimization is disabled. The WAL is in that case
the only way to get the data over to the standby system, so it can't be skipped. In
PostgreSQL 9.0, some settings of wal_level can disable this optimization too. Since
archiving is often off or can be delayed until after initial bulk loading of a database,
this trick can still be useful in the early stages of a standby configuration.

Recreating indexes and adding constraints
Presuming you dropped indexes and constraints before loading data in, you'll
now need to recreate them again. Index rebuild in particular can be very processor,
memory, and disk intensive. If you have a large disk array, it's quite reasonable
to consider running two or more such rebuilds in parallel. It's recommended that
you have high values for shared_buffers, checkpoint_segments, checkpoint_
timeout, and maintenance_work_mem to make indexing and constraint checking
perform well.

Chapter 16

[403]

Parallel restore
PostgreSQL 8.4 introduced an automatic parallel restore that lets you allocate
multiple CPU cores on the server to their own dedicated loading processes. In
addition to loading data into more than one table at once, running the parallel
pg_restore will even usefully run multiple index builds in parallel. You just need
to tell it how many "jobs" it can run at once, and once it's finished the basic table
setup it will try to keep that many things active at all times. You do have to use the
custom database dump in just the right format for the parallel restore to use it.

COPY in PostgreSQL requires a pretty large amount of CPU to run, and it's actually
quite easy to discover a single core is maxed out running it without keeping the disks
busy. But it is possible that parallel restore may just turn disk bound and not see
much of a speed increase. The magnitude of the improvement is proportional to how
fast your disks are. Also, if the bulk of your loading time is spent dealing with one
very large table, this won't benefit very much from a parallel load either. The ideal
case for it is where you have many similarly sized tables to load and/or index.

If you have a PostgreSQL 8.4 installation available, it's possible to use it to dump
and restore against older database versions too. You might connect to an 8.2 server,
dump in the format parallel restore expects, and then use parallel restore against
an 8.3 server. All of the improved smarts here are handled on the client-side; they
don't require specific server support. There have been reports of this working fine,
but since it's normally preferable to dump with the same client version you expect
to restore, though it's a bit risky. Consider using parallel pg_restore against older
versions, something you want to carefully test before you rely on it for a production
quality migration.

Post load cleanup
Your data is loaded, your indexes recreated, and your constraints active. There
are two maintenance chores you should consider before putting the server back
into production. The first is a must-do: make sure to run ANALYZE against all the
databases. This will make sure you have useful statistics for them before queries
start running.

Avoiding Common Problems

[404]

You could also consider running a database-wide VACUUM, if you can stand the
additional downtime during the load. The reason for this is that it will set the hint
bit data for each page of the database, as described later in the Unexplained writes
section. You can even combine the two with VACUUM ANALYZE and get everything
ready for good initial performance. It's possible to get autovacuum to chew away on
that problem instead, but it will considerably slow the database until that's finished
every table. Another potential improvement recommended here is making this
wide VACUUM more aggressive about freezing old transactions, as the things you're
loading are unlikely to get rolled back later. This is the spot when reducing the
vacuum_freeze_min_age parameter in the postgresql.conf to 0 in order to make
any manual post-load VACUUM as aggressive as possible would be useful.

Once you've done as much of this maintenance as you can tolerate, make sure you
also revert any loading specific optimizations you made to the postgresql.conf file
before making the database live again. That may include turning autovacuum back
on and changing your relative memory allocations to something tuned for clients,
instead of loading.

Common performance issues
Many performance issues come from bad design or implementations that just don't
fundamentally work well with PostgreSQL. There are a few areas where the problem
is not so bad, it's more of a quirk with known workarounds. This section covers some
of the more common problems new PostgreSQL users run into from that category.

Counting rows
It's non unusual to find an application that does the following to determine how
many rows are in a table:

SELECT count(*) FROM t;

In some databases other than PostgreSQL, this executes very quickly, usually
because that information is kept handy in an index or similar structure.
Unfortunately, because PostgreSQL keeps its row visibility information in the row
data pages, you cannot determine a true row count without looking at every row
in the table, one at a time, to determine if they are visible or not. That's a sequential
scan of the full table, and it's pretty slow; it even turns out to be an effective way
to benchmark sequential read speed on a table to count its rows this way!

Chapter 16

[405]

If your statement is fairly selective instead:

SELECT count(*) FROM t WHERE k>10 and k<20;

This form can execute quickly, presuming that the index scan on k is only returning a
few rows. How fast a count runs is proportional to the number of rows returned.

If you need a row count and can't afford to wait that long, there are two alternate
approaches. For situations that just need an approximate count, without taking
every last bit of row visibility information into count, one is computed each time
ANALYZE is run either manually or using autovacuum. You can find the row estimate
it computes, which is usually quite accurate unless your rows vary wildly in size,
like the following:

SELECT reltuples FROM pg_class WHERE relname='t';

If you might have more than one table with the same name but a different
namespace, the following form is required:

SELECT reltuples

FROM pg_class C

LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)

WHERE c.relname='t' and nspname = 'public';

Again, these values are only as accurate as your last analysis, so make sure those
happen regularly if you expect this form of count to be useful.

The other approach you can consider is adding a trigger onto the table that tracks the
change in count each time a row is inserted or deleted, then store the total that way.
This total will always be exact, except for the usual fuzziness about whether the most
recent transactions are visible or not. There is a list of code examples shown to build
this onto your own app at http://wiki.postgresql.org/wiki/Slow_Counting
that are worth looking at. At a somewhat higher level, maintaining a count can be
considered a very simple materialized view, and some of the techniques useful for
that can also be used here.

Unexplained writes
There are several situations where you can find yourself executing statements that
only read against the database, yet find significant write volume happening on the
database disk.

Parts of the buffer cache must be dirty before writes happen, so if any of that work
is left hanging around it could be involved. Flushing everything out with a manual
checkpoint is one way to assure that's not the cause of the writes.

Avoiding Common Problems

[406]

A second small source of writes are the access time updates many operating systems
do every time you read from a file. It's suggested these get turned off in Chapter 4,
Disk Setup, and the actual volume of writes from that is pretty low anyway.

If the volume of writes is substantial, and this data was recently created, what you're
mostly likely running into are updates to the hint bits in the database. Hint bits are
two bits stored in each row that indicate whether that row's associated transaction
has committed or rolled back. If they aren't set, the database's commit log data (in
pg_clog and possibly pg_subtrans) has to be consulted to determine if the row is
visible. Once going though all that trouble, the row is then updated with the correct
hint bit information, so that expensive computation doesn't have to be done again.
The result is now a dirty page that needs to be written out again, even though all
you did was read it.

Executing something that checks every row in a table, including a full table SELECT,
COUNT, or running VACUUM against it, will perform this visibility check and write out
final hint bits for each row. Until that's happened, expect some steady write activity
consisting of hint bit updates any time you're selecting against recently committed
data. See http://wiki.postgresql.org/wiki/Hint_Bits for more information
about the internals involved.

Don't forget about some simpler causes for writing when executing queries too.
Autovacuum running in the background after being triggered by recent activity
might be writing things. And if your query is doing a sort operation or using
temporary tables that spill over to disk, that will cause writes too.

Slow function and prepared statement
execution
A prepared statement is a valuable technique that rejects SQL injection into your
applications as well as allowing you to bypass regular query parsing in order
to save overhead. You might use one like the following:

PREPARE getvals (int) AS SELECT * FROM t WHERE t.v=$1;

EXECUTE getvals(5);

This returns everything in the rows with a matching v value. The PREPARE saves the
output from the query parsing and planning stage. You might think that this will
always be a win over directly executing the query if it's being executed more than
once, because that overhead will then be amortized over more statements.

Chapter 16

[407]

This isn't necessarily true. When a statement is prepared, the query optimizer can
only produce a generic query plan for it, not knowing anything about the actual
values that are going to be requested. When you execute a regular query, the
statistics about each column available to the optimizer can sometimes do much better
than this. Consider the case where the value v=5 only appears in 1% of the rows in
the table, which the optimizer could know based on the statistics collected about this
table. Had you executed a regular statement using that restriction in a WHERE clause,
the optimizer would have strongly considered an index scan to only retrieve those
small number of rows. But in a prepared statement context, where it had to choose
the query plan at preparation time, it could only choose a generic plan that couldn't
take advantage of statistics so detailed—it didn't know the exact value to match
against yet.

In PostgreSQL 8.4, it's possible to use the new QUERY EXECUTE…USING syntax
in order to get a newly planned query while still being safe from SQL injection.
See http://okbob.blogspot.com/2008/06/execute-using-feature-in-
postgresql-84.html for background about this new feature. In older versions, you
can construct statements as strings, quote_literal to resist SQL injection, and then
manually EXECUTE those to work around this issue; see http://blog.endpoint.
com/2008/12/why-is-my-function-slow.html for an example.

PL/pgSQL benchmarking
PostgreSQL 8.4 added a feature to allow track statistics on how long each database
function written in PL/pgSQL and similar languages take to execute. To enable this
edit your postgresql conf:

track_functions = all

The other options here is pl, which only tracks the pl/* language functions instead
of all of them (that is, not the ones written in C). Once that's done, you've executed
some functions, and you've waited a moment for those to show up in the statistics
collector, the following query will show you what executed:

SELECT * FROM pg_stat_user_functions;

In earlier versions, it was possible to build your own test harness using the technique
described at http://www.justatheory.com/computers/databases/postgresql/
benchmarking_function.html.

Avoiding Common Problems

[408]

If instead you'd like to figure out which individual statements are responsible for
the overhead, instead of just finding out how long the entire function takes, you'll
need something more like a profiling tool for that. EnterpriseDB has released
a PL/pgSQL debugger that includes profiling features. It comes bundled with
their PostgreSQL installer, and you may be able to install it separately on top of
community PostgreSQL as well. There is also an interesting albeit intrusive way
to build your profiling by hand described at http://www.depesz.com/index.
php/2010/03/18/profiling-stored-proceduresfunctions/ that's applicable
to any PostgreSQL install.

High foreign key overhead
When you commit a transaction, if there's a foreign key involved, that commit is
fairly expensive. As a percentage of total processing time, this is particularly bad if
you're doing updates one at a time. To help improve this situation for batch updates,
you can mark foreign key constraints as DEFERRABLE, either during CREATE TABLE
or in a later ALTER TABLE to adjust it. The default is NOT DEFERRABLE. Note that this
only impacts foreign keys and similar constraints implemented as triggers. It doesn't
do anything for CHECK and UNIQUE restrictions, which cannot be deferred, and
instead are always processed immediately, at least before PostgreSQL 9.0 that is. See
the performance notes for 9.0 at the end of this chapter for more information about
additional options available in that version.

For deferrable constraints, there are again two options. If the check is labeled
INITIALLY IMMEDIATE, it still happens immediately rather than at the end of the
transaction. You can also modify the constraint so the default is instead INITIALLY
DEFERRED, making the check only at transaction end.

In the case where a check is DEFERRABLE and it's INITIALLY IMMEDIATE, you can
alter what a particular session does using SET CONSTRAINTS. Standard practice for
foreign keys is to make them deferrable but default to the more proactive immediate
behavior, then make batch updates process them in a deferrable transaction like
the following:

BEGIN;

SET CONSTRAINTS ALL DEFERRED;

[update or insert statements]

COMMIT;

Chapter 16

[409]

This will batch all of the processing related to deferrable constraint checks into one
block, which is much more efficient. There is a potential downside to be concerned
about here though. If your batch size is large when using this technique, the COMMIT
can block for quite some time while chugging through all that work. And it's easy for
other transactions to get stuck behind it. Overall, large foreign key checks bunched
together by deferring them is something to keep an eye out for, as a potential source
for latency spikes in query activity.

Trigger memory use
If you've used some of the suggestions here to group your database commits into
larger chunks, you might notice an expected downside to that: running out of
memory at commit time. The issue is that if the table you're changing has an AFTER
trigger on it, each statement due to trigger is inserted into an in-memory list. If there
are a large number of them, perhaps due to a bulk loading job, it's possible to run
out of the amount of memory on the system (or reach the limit for your user account)
before the transaction can complete. Be careful when combining AFTER triggers with
batch commits.

Heavy statistics collector overhead
One of the background database processes that shouldn't occupy too much of your
system is the statistics collector, which looks like this from the perspective of ps:

Postgres 32450 32445 0 13:49 ? 00:00:00 postgres: stats collector process

Under normal circumstances, the statistics collection shouldn't take more than a few
percent of CPU time even under heavy activity. There are occasional versions of
PostgreSQL where this is not true. For example, 8.2.0 through 8.2.3 had a serious bug
where statistics wrote far too often. But even if you're running 8.2, you should never
be using such an old minor release of it anyway.

Sometimes circumstances aren't normal enough, and the statistics collector takes up
a lot more time than it normally does to run. This is normally associated with the
statistics collector file itself becoming very large; here's a small one:

$ ls -l $PGDATA/pg_stat_tmp

-rw------- 1 postgres postgres 28961 2010-06-01 13:49 pgstat.stat

Avoiding Common Problems

[410]

If your statistics collector is running slowly, and particularly if that's accompanied
by the pgstat.stat file being very large, you should try resetting your database
statistics. It's hard to say what "large" is here without knowing the size of your
database; tracking the file size for a bit after reset may give you an idea what's
appropriate for your system. You might want to save interesting statistics like
pg_stat_user tables before resetting, just so that cumulative data there isn't
lost. Statistics are reset like the following:

$ psql -c "select pg_stat_reset();"

And the file should be small again. It should grow for a while then hit a steady
state size. If it continues to grow without bound again, this is the behavior you
can consider reporting to one of the PostgreSQL mailing lists, as it's been a difficult
to replicate problem for some users recently.

Targeted statistics resets
Starting in PostgreSQL 9.0, it's also possible to reset the pg_stat_bgwriter
view using

$ psql –c "select pg_stat_reset_shared('bgwriter');"

Although, this will never cause heavy statistics overload as it's not stored in a file
that will get large. It's also possible to reset single statistics values in 9.0 using
pg_stat_reset_single_table_counters and function stats with pg_stat_reset_
single_function_counters, but if your issue is high statistics collector overhead
you should really reset the whole thing instead.

Materialized views
One of the most effective ways to speed up queries against large data sets that are
run more than once is to cache the result in a materialized view, essentially a view
that is run and its output stored for future reference. Work on adding these into
the core database is in progress, but like counting it's possible to build them right
now using features such as triggers. See http://wiki.postgresql.org/wiki/
Materialized_Views for comments on the state-of-the-art here, and pointers to code
samples. If you have views derived from large tables in the database, few techniques
are as effective as materializing those views and optimizing their updates for
improving query performance.

Chapter 16

[411]

Profiling the database
Sometimes figuring out why your code isn't working properly is best done by
diving into the database itself and looking for bottlenecks in its code. There are a few
techniques available for this.

gprof
The standard GNU profiler, gprof is available for most UNIX-like systems. If you
compile the PostgreSQL server using the --enable-profiling option, it will
produce a gmon.out file that can be given to gprof for verbose profiling of the
server internals.

The main issue with gprof profiling and PostgreSQL is that it's known to have
problems when tracing into functions in loadable libraries. Also, it's hard to combine
the profiling information with a look at what the underlying operating systems is
doing. These two limitations combine to make gprof only suitable for profiling
fairly simple and pure database operations.

OProfile
OProfile is a venerable tool for profiling everything that happens on a Linux server.
You need to have debugging information for your kernel, which can be tricky to
obtain depending on your distribution. But the basic data collection is simple after
that, and contains everything from the OS to the highest level database operations.

OProfile is the preferred tool for many who work on PostgreSQL to find
bottlenecks and hotspots in the code under Linux. An excellent introduction
to it that covers additional tools to extend its analysis power is available at
http://wiki.postgresql.org/wiki/Profiling_with_OProfile.

Visual Studio
Starting with PostgreSQL 8.4, on Windows the database can be built using Visual
Studio. This means that it's possible to use the Visual Studio tools including the
debugger and profiler in order to analyze the performance of the database code.

Avoiding Common Problems

[412]

DTrace
Sun's Solaris 10 release in 2004 introduced DTrace, perhaps the most comprehensive
toolkit for profiling available on any operating system. The probes required to
instrument code with DTrace have minimal overhead when they are not enabled,
and the way they're inserted makes it possible to instrument a production system
very safely. Making this level of power available to regular user level processes is
also quite useful.

PostgreSQL must have been compiled with the --enable-dtrace option for its
DTrace probes to be available. You could write an entire book just on how to use
DTrace with PostgreSQL. The main PostgreSQL manual section at http://www.
postgresql.org/docs/current/interactive/dynamic-trace.html covers all
the probe points available as of the current version. Links to additional utilities and
documentation are available at http://wiki.postgresql.org/wiki/DTrace.

The DTrace implementation on Apple's Mac OS X is also very complete, including
surprisingly good details about what's happening into the operating system itself.
In addition to the command line tools, Apple provides a good GUI interface to the
DTrace data named Instruments, as part of their XCode development tools.

DTrace on FreeBSD
As of the current FreeBSD 8.0, the DTrace implementation in that operating system
has two major missing features. The probes into the operating system itself aren't
very comprehensive yet. And so far only root can use DTrace. Both these limitations
are being worked on, and FreeBSD may move closer to Solaris in terms of how
capable it is for doing DTrace work in future releases.

Linux SystemTap emulation of DTrace
SystemTap is a Linux utility that allows dynamic tracing similar to DTrace.
Starting in SystemTap V0.9, it includes header files that expose the same user space
capabilities that DTrace does. This means that on a Linux system with that version of
SystemTap or later, you can compile PostgreSQL using --enable-dtrace and it will
hook into SystemTap using the DTrace probes.

Support for SystemTap varies quite a bit based on Linux distribution. The Fedora
Core versions starting with FC10 include support for the PostgreSQL DTrace probe
emulation, and that support has been included as part of RHEL 6 too. These RedHat
systems are the most reliable source for SystemTap on Linux.

Chapter 16

[413]

On Debian and Ubuntu, SystemTap with appropriate headers may be available, but
support for the matching kernel debugging symbols has been very sporadic. It's not
clear yet whether this will be considered a priority to resolve in future releases.

From a database administrator perspective, the amount of kernel level work
required to make SystemTap install and instrument a running system makes it a
less appropriate tool for use on a production server than DTrace. It just isn't as well
designed for that purpose, particularly because it's easier to misuse in a way that's
dangerous to the server.

Performance related features by version
A guide to the major changes in each PostgreSQL version starting with 7.4 is
available at the Feature Matrix page: http://www.postgresql.org/about/
featurematrix.

Since many performance related changes are more internal, you won't necessarily see
them there. The details are only in the release notes, which you can read the latest
version of at http://www.postgresql.org/docs/current/static/release.html.

This section will help you guide which features and settings aren't available in older
(or are removed in newer) versions of PostgreSQL in a more compact form, targeted
specifically at performance related ones. First a digression into why this is more
important than you might think is in order.

Aggressive PostgreSQL version upgrades
One habit some database deployments adopt that is counterproductive with
PostgreSQL is the idea that the version of the software used should be frozen
forever once the system is validated as working. This is a particularly a troublesome
viewpoint for systems that are running into performance issues to adopt. The
performance increases you'll find just from upgrading from older to newer
PostgreSQL versions can be far larger than anything you can do just by tweaking the
older version. Similarly, if you're running into a problem with how a specific query
is executing, don't be surprised to find that it's fixed in a later version of PostgreSQL,
and upgrading to it is really your only option to obtain that fix.

Avoiding Common Problems

[414]

While major version upgrades like going from PostgreSQL 8.2 to 8.3 will introduce
compatibility issues, you shouldn't expect that to be the case for minor version
upgrades. If you're running 8.2.3 for example, merely because that's the version you
originally tested your application on, your statistics collector process will write data
at a quite active pace. I recall this particular bug as one that was crippling to the
system I encountered it on. If you merely upgrade to the current 8.2 release (8.2.17
as this is being written), not only will that problem go away, you'll get a long list of
other bug fixes—some of which resolve problems that might even lead to database
corruption one day if left unfixed. Considering that only fixes for serious bugs are
put into the minor version updates to PostgreSQL, not running the latest minor
release available is a downright dangerous practice. A minor version upgrade like
8.2.3 to 8.2.17 is more like what some vendors refer to as a "fix pack" than a serious
version upgrade. Avoid applying such fixes at your own peril.

Similarly, applying serious resources toward improving a system based on an
old version of PostgreSQL is often the wrong move too. If you are suffering from
really bad checkpoint spikes, and you're on PostgreSQL 8.2 or earlier, there is no
good substitute for upgrading to 8.3 or later to help improve those. If you're on
PostgreSQL 8.3 and have queries that involve heavy group or sort operations, you
could spend far more time trying to fix those queries than it would have taken you
to upgrade to 8.4, where the hash-based implementation of those operations is
available to vastly accelerate certain types of them.

There are a few reasons for the feature by version list given below. One is to make
you aware of what your version of PostgreSQL can and can't do from a performance
perspective, information that can be hard to accumulate on your own (the release
notes are not verbose). Knowing what was improved in a later version can be a clue
as to what's wrong with earlier ones. And in cases where your problem sounds like
something resolved in a later version, that should at least raise the possibility that a
database version upgrade is worth considering.

To give a very real example of how this regularly plays out, there are people quite
happily running PostgreSQL 7.4, a popular version because it shipped with RedHat
Enterprise 4. And that version has continued to receive critical bug fixes and
security patches up until very recently, even though it's seven years old at this point.
But if you're trying to optimize performance of a 7.4 installation, something the
PostgreSQL community regularly sees people trying to do with little success, that's
time you're probably wasting. The effort would be better spent upgrading to a newer
version. The same thing is true for PostgreSQL 8.0, and even 8.1 and 8.2 look pretty
slow from the perspective of the current version at this point.

Chapter 16

[415]

8.1
The shared buffer cache used to hold database data was redesigned for better
concurrent use. This change is the major reason 8.1 is the earliest PostgreSQL
version with good scalability.
Bitmap scans allow combining multiple single-column indexes for queries
that reference more than one column. This decreases the need to create
computationally expensive multi-column indexes on tables.
Autovacuum, formerly a module that had to be explicitly loaded, was
integrated into the main server (but not started by default).
Table partitioning is improved to allow skipping partitions that can't possibly
satisfy a query.
Indexes are automatically used for MIN() and MAX() queries.

8.2
Memory settings in the postgresql.conf file can be specified in standard
units such as '1 MB', instead of simply raw integers whose settings depends
on the server units.
Indexes can be created concurrently, without blocking writes to the table.
You can watch the autovacuum daemon work in pg_stat_activity, and it
records what it has done in views such as pg_stat_user_tables.
Tables and indexes can have a FILLFACTOR that allows better clustering when
inserting data out of order.
The seq_page_cost configuration parameter was added, allowing easier
fine tuning of how expensive the query planner thinks sequential and
random I/O are.
Several features were improved allowing more useful warm-standby server
setups for disaster recovery failover.
COPY can dump the results of an arbitrary query out, allowing that
high-performance output path more targeted data replication capabilities.
A faster binary COPY was also added.
Initial support for DTrace was added. The number of things you can monitor
with it is limited in this version though.

•

•

•

•

•

•

•

•

•

•

•

•

•

Avoiding Common Problems

[416]

8.3
Heap-Only Tuples (HOT) allow quicker re-use of the dead space left
behind when a row is updated or deleted, as long as that doesn't touch
its indexed columns.
Autovacuum is turned on by default, and multiple autovacuum processes
can run at once.
You can turn off synchronous_commit in order to speed up database
commits, at the expense of introducing some potential for lost transactions.
Checkpoints can be spread over a longer period of time, adjusted using the
checkpoint_completion_target setting.
The background writer in earlier versions was easy to configure
so that it decreased performance instead of improving it. The new
just-in-time background writer in this version is largely automatic
and has less parameters to configure.
pg_stat_bgwriter allows monitoring both the background writer and the
writes done by the spread checkpoints.
Sequential scans use an improved scheme that reduces their memory
footprint, so that they're less likely to eject useful pages from the buffer
cache as they execute. And if multiple scans are executing against the same
table, they will synchronize in order to reduce duplication of reading. This
is another reason to make sure you explicitly ORDER things that need to be
sorted, because when synchronized scans kick in the second client joining
the scan will get rows starting with wherever the first one happens to be
reading against.
Read-only transactions are allocated virtual transaction ID numbers
instead of real ones, reducing their overhead. The rate of transaction use
and associated snapshot information can be inspected using a set of added
functions that include txid_current() and txid_current_snapshot().
Temporary files can be moved using the temp_tablespaces parameter.
Several types of activity that can correlate with performance issues can be
more easily logged: autovacuum, checkpoints, temporary file usage.
All log activity can also be saved in the Comma Separated Values (CSV)
output format, which makes them easier to process with external tools.
If you comment out a previously set parameter in the postgresql.conf,
starting in this version that will return it to the default; in earlier ones that
just left it unchanged.

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 16

[417]

Live and dead tuples (a tuple is essentially what most people think of
as a row) are tracked in pg_stat_user_tables.
Long-running transactions are easier to find in pg_stat_activity.
The archive_mode parameter makes it easier to toggle on and off saving
write-ahead log segments for a standby server.
The CLUSTER command is improved to where it's a viable way to clean up
after some situations where VACUUM FULL was the only alternative before.
Performance of the Windows port was improved by building it and using
memory in a more efficient manner for that platform.
The pg_buffercache module can now display page usage counts, allowing
more useful introspection of the buffer cache.
The pgbench utility now saves latency information with a full timestamp for
each transaction, enabling analysis such as graphing of the results.
Indexing of NULL values is greatly improved, including the ability to control
where they are placed relative to the rest of the table (beginning or end).

8.4
The free space map used to track space that used to belong to now deleted
data is tracked on disk instead of in shared memory, which removes any
limits on how large it can be. This removes the need to worry about the
max_fsm_pages and max_fsm_relations parameters, which are removed in
this version. It also makes it much less likely that systems that are not being
vacuumed frequently enough will end up in a situation where it's difficult
to recover from that situation.
The default value of the default_statistics_target parameter was
increased from 10 to 100. This makes query planning time longer, and is
responsible for a significant portion of the sometimes measured degradation
in performance between 8.4 and 8.3 seen in many benchmarks. This mainly
impacts trivial queries however. In more real-world ones, having improved
statistics to work with will improve performance by making it less likely
the query planner will pick a particularly bad execution plan. It's always
possible to reduce this parameter for 8.4 systems that don't need to plan
more complicated queries.

•

•

•

•

•

•

•

•

•

•

Avoiding Common Problems

[418]

In earlier versions, queries running against partitioned tables would only know
how to limit their search to individual partitions if the constraint_exclusion
parameter was changed from its default value, because that overhead would
otherwise apply to every query. A new partition setting for this parameter,
now the default, allows partitioned queries to be supported without impacting
the performance when a partition isn't involved.
Bitmap index scans, often used when combining multiple relevant indexes
used by a query, can do read-ahead set by the effective_io_concurrency
parameter to improve performance. This feature was tested mainly on Linux.
It can have a significant benefit on systems that support more than one disk
operation at once, such as when a striped RAID volume is available.
SQL WINDOW functions allow writing new types of queries far more efficiently
than before, such as queries that need an idea of what the contents of nearby
rows are.
WITH clauses such as WITH RECURSIVE allow common-table expression
(CTE) programming. A common use of CTEs is to execute recursive query
programs, which greatly simplifies and speeds up handling structures such
as trees stored in the database.
pg_restore can now do some operations in parallel to improving
loading speed on systems that are limited there by CPU speed instead
of disk throughput.
The auto_explain feature makes it easy to log EXPLAIN output only for
queries that take longer to run.
A new pg_stat_statements add-in module allows tracking execution
statistics of all SQL statements executed by a server. This replaces several
situations where parsing the database log files was needed to gather
statement profiling information needed for query tuning.
User-defined functions can be monitored using pg_stat_user_functions.
EXPLAIN VERBOSE gives a more useful set of information than before.
SQL standard LIMIT and OFFSET queries are now supported, and they can
use sub-selects.
Autovacuum parameters can now be easily adjusted per table using the
CREATE TABLE and ALTER TABLE storage parameter mechanism.
VACUUM is more likely to make progress on systems with really long-running
transactions. Partial VACUUM was also added, which allows processing to
skip sections of a table that it knows cannot have anything to cleanup left
on them.

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 16

[419]

It's possible to adjust some of the server block size parameters at build time
using parameters passed to the configure script, instead of needing to edit
the source code.
The database statistics file, which is both written to often and not necessarily
critical for all situations, can be run against a different location such as
a RAM disk using the stats_temp_directory parameter. When this is
enabled, a normal startup/shutdown procedure will save the data changes
to disk, but some statistics could be lost in an unplanned crash.
More DTrace probes were added, and now they work on platforms other
than Solaris (such as Mac OS X).
pgbench can be run for a period of time instead of just for a number of
transactions. The names of the tables it uses now are all prefixed with
pgbench_ to avoid confusion with real user tables.
Much smaller sizes of data might be compressed using the TOAST scheme.

9.0
The individual items in the lists previously were sorted approximately by expected
impact on your system. But there were so many changes to 9.0, they're being broken
up by category for this section. As with all of the version summaries here, this is
focusing on performance related features, which represent only a fraction of the
changes made in this version. Some major areas renovated in 9.0, such as big changes
to database function languages PL/pgSQL, PL/Perl, and PL/Python, are completely
ignored here. The goal here is to provide a quick (compared to the release notes at
least) summary of the big performance related pieces in only a few pages.

Replication
Asynchronous master/slave Streaming Replication is built-in to the database,
without requiring as many external scripts to be configured.
Replicated systems can be set up as Hot Standby ones that allow read-only
queries to execute against them.
The control over WAL archiving has been split. In addition to the existing
archive_mode and archive_command settings, a new wal_level setting
allows fine-tuning how much information is written to the WAL.
Monitoring of the replication progress made by a standby server that accepts
Hot Standby queries can be done using the pg_last_xlog_receive_
location() and pg_last_xlog_replay_location() functions.

•

•

•

•

•

•

•

•

•

Avoiding Common Problems

[420]

A new tool for removing older WAL archive files has been provided as
contrib/pg_archivecleanup. This is expected to be called when using the
new archive_cleanup_command parameter to maintain standby archive log
directories. The program is always written so that it can be copied to and
compiled for earlier PostgreSQL versions too, where this problem already
existed, and was usually handled with less robust techniques than this
program uses.

Queries and EXPLAIN
EXPLAIN plans can be output in XML, JSON, or YAML formats, to make it
easier to analyze them with external tools (or to write such tools yourself).
EXPLAIN (BUFFERS) allows monitoring the actual I/O done by a particular
query, instead of just showing its costs.
EXPLAIN output shows more information about how the increasingly useful
hash nodes in query plans.
Window functions have some new options such as PRECEDING, FOLLOWING,
and starting with CURRENT ROWS, all of which allow writing some new types
of windowed queries.
Outer joins that reference tables not actually used to satisfy the query can
now be removed from the query plan to improve their performance. Queries
with that issue are commonly created by object-relational mapper (ORM)
software. This can happen when queries use only part of the data in a
complicated view too.
Each tablespace can be assigned its own sequential and random page
costs via ALTER TABLESPACE. This allows tweaking those settings for disks
known to be particularly fast or slow relative to others. SSD and similar
memory-based storage where random page lookup is nearly as fast as
sequential are an example.
The statistics for how many distinct values are in a column can be manually
adjusted using ALTER TABLE, to improve cases where they've been
estimated badly.
Queries using IS NOT NULL can now use indexes to help compute their
results. This particularly accelerates MIN() and MAX() lookups when your
index has many NULL values.

•

•

•

•

•

•

•

•

•

Chapter 16

[421]

The Genetic Query Optimizer (GEQO) can now be forced to use a fixed
random seed value. While query plans will still be random, any given
query will always get the same optimizer plan. This makes reviewing and
troubleshooting bad GEQO plans much easier to do. Before it was impossible
to be sure how a query using this feature was optimized and executed if you
didn't log it at the time.
Estimation for values using greater or less than comparisons are improved,
particularly for situations where data is constantly being inserted into a
table at one end of a column's range. This is common for time series and
many other types of data. If the relevant statistics histogram bucket for the
comparison is the first or last one available, and there is an index available,
it's cheap to determine the true minimum or maximum value of that column.
That min/max will be used instead of what's in the histogram bucket to find
the left or right edge of the values in the column, instead of the possibly out
of date information ANALYZE last put into the relevant histogram bucket.
The query optimizer is much more aggressive about using Materialize
nodes when it plans queries, if it believes that will perform better than
earlier approaches for executing that plan. This may result in queries
to use a higher multiple of work_mem than they did before as a result, to
hold those Materialize nodes. This feature can be disabled by turning off the
enable_material parameter. Like any new optimizer feature, this is useful
for troubleshooting whether the implementation is working as expected
when you see more of these nodes appear in query plans.
GIN indexes are created using self-balancing Red-Black trees, which
particularly improves their performance when data is inserted in index
order—a situation particularly common when loading a database.

Database development
The PL/pgSQL language used for writing many types of functions is now
installed in all databases by default. It can still be removed if desired.
Triggers can be attached specifically to a column, eliminating unnecessary
calls to trigger function that aren't needed unless specific columns are altered.
It's also possible to restrict when a trigger fires using a WHEN clause, further
cutting down on unnecessary calls to the trigger function.
The LISTEN/NOTIFY mechanism for passing messages between database
clients is faster and allows sending a "payload" string message. This allows
building some better cross-client messaging systems using the database itself
than was possible before.

•

•

•

•

•

•

•

Avoiding Common Problems

[422]

Applications can set an application_name parameter, which is shown in the
pg_stat_activity information the database displays. Consistent use of this
feature allows better monitoring of activity based on what the application is
doing. In older versions, assigning dedicated user roles to certain application
functions was normally done to approximate tracking at this level. While that
still works too, this mechanism gives a more fine-grained way to track what
the application is doing.
The error message when a constraint uniqueness violation occurs now
includes the value involved. This makes it much easier to figure out what
caused the problem.
Constraint checks can now be marked as DEFERRABLE. Previously constraints
were checked on a per row basis. This new approach allows checking for
constraint violations only at the end of a statement or transaction. Some
types of changes that were previously difficult to execute, such as mass
renumbering of the primary key in a table, are much easier to execute if
you defer all key checking until commit of every change.
A new class of constraints similar to uniqueness ones are available, called
exclusion constraints. These allow constraints to enforce things such as
ranges that must not overlap, instead of just checking for duplicate values.
This can be particularly useful for applications that work with date ranges.
A simple example is preventing items on a calendar from overlapping.
The contrib/hstore module, which adds a relatively low overhead key/
value store type, has been upgraded to be faster and more capable. It's
much more practical to add a high performance simple key/value store to
a PostgreSQL database using this module now. This sometimes allows for a
more practical storage approach to be combined with traditional relational
queries, using whichever of the two is more appropriate for each type of data
you need to store.

Configuration and monitoring
Server parameters can be adjusted per user/database combination.
When the postgresql.conf file is reloaded via pg_ctl reload or sending
the server a SIGHUP signal, the server log file notes which parameters were
changed as a result.
Background writer statistics can now be reset using pg_stat_reset_
shared('bgwriter').
Table and function counters can be individually reset using pg_stat_reset_
single_table_counters() and pg_stat_reset_single_function_
counters() functions.

•

•

•

•

•

•

•

•

•

Chapter 16

[423]

The log_temp_files parameter is now specified in kilobyte units, and its
documentation corrected (the description in earlier versions was misleading).
The log_line_prefix option can now track the SQLSTATE value set for
messages such as errors, allowing logs to be more carefully analyzed by
their exact error codes.
The somewhat confusing relation size functions include new variations
named pg_table_size() and pg_indexes_size(), which don't require
knowing as much about database storage trivia to interpret usefully.

Tools
pgbench can now run multiple benchmarking processes/threads at once.
Earlier versions could easily become limited by the speed of the pgbench
client coordination part of the program itself instead.
The contrib/auto_explain output displays the query being executed,
in addition to its plan.
Query log data collected by contrib/pg_stat_statements includes counts
for how much buffer cache activity was associated with each statement.

Internals
A utility named contrib/pg_upgrade allows upgrading to 9.0 from either
version 8.3 or 8.4 without needing to dump and reload the database, what's
normally referred to as "in-place upgrade".
A 64-bit Windows version is released, which allows the server to use more
memory than earlier versions. It's still not expected that extremely large
settings for shared_buffers will be useful on that platform however. But
this does allow you to be more aggressive with settings like work_mem than
you were able to before.
VACUUM FULL has been changed to use the same rebuild mechanism that
CLUSTER uses in earlier versions. This requires more disk space, but is
normally faster and it avoids the index bloat issues that VACCUM FULL
used to introduce in many situations.
You can use CLUSTER on any system catalog tables that are per database,
but still not ones that are shared by all databases. However, shared system
catalogs can now have REINDEX executed on them safely. Previously that
was only possible in the special database maintenance standalone mode,
and even there it was dangerous.

•

•

•

•

•

•

•

•

•

•

Avoiding Common Problems

[424]

Some variations of ALTER TABLE require making a whole new copy of the
table that includes the added/changed information, in a similar way to how
CLUSTER rewrites a table. Since the copy in progress is not important unless it
is complete, the block changes to create it are not longer written to the WAL.
This is the same way that new and truncated tables avoid WAL logging
when you write to them in a transaction that clears them. If the transaction
doesn't complete, the partial copy is just destroyed. In this new case, as with
the older CREATE TABLE/TRUNCATE ones, if you have WAL archiving enabled
to send data to a standby server this optimization can't be used.
When compiling the database, the default is now to include the feature that
used to require requesting --enable-thread-safety. That option allows
multi-threaded client programs to be compiled using the database client
libraries and run safely. In earlier versions, this was disabled by default,
and required recompiling the database to fix.
The database has a better idea how to deal with the Linux Out of Memory
(OOM) killer process. With the appropriate matching changes to server
startup scripts, this allows making the main database server process resistant
to the killer. Individual clients will instead be targeted if their memory usage
goes out of control. In earlier versions, it was usually the main server process
that was killed in that situation.
Several commands now allow a new syntax where options can be passed
using a list in a () block instead of more traditional SQL syntax. EXPLAIN,
COPY, and VACUUM all have this alternate syntax available for some
parameters. In some cases it's the only way to use newer features added
to those commands.

Summary
One of the advantages of an open source community like the one around PostgreSQL
is that it's easy to see what other people struggle with. Watch enough of that, and
some trouble spots that aren't too difficult to avoid become obvious. Some of the
biggest problems people run into are quite fundamental to PostgreSQL: getting
VACUUM to work properly, making sure your application acquires locks properly,
there's a long list of major thing you need to get right. But sometimes the little
details can trip you up instead. The tips covered in this chapter—from bulk loading
to profiling—might provide the right background trivia to make your use of the
database simpler when dealing with the smaller problems, too. And sometimes the
answer to your problem is solved simply by using a newer version of PostgreSQL,
where it's been engineered out of the database.

•

•

•

•

Chapter 16

[425]

Bulk loading works well using COPY, but alternate techniques such as bulk
inserts or even add-on tools may be appropriate when dealing with less
than perfect input data. You should also consider tuning your database
server a bit differently when running a bulk load than you would for
regular operation.
PostgreSQL doesn't have any reliable way of knowing how many rows are
visible in table to accelerate counting them. Applications that expect that
to be fast may need to use an alternate approach.
After transactions are updated, a vacuum processing step called hint bit
updating can cause unexpected writes even when doing simple reads
from a table.
Statements that are prepared or executed from functions can get generic
query plans that don't take into account all the table statistics available.
You may benefit from executing these differently, so that proper query
optimization takes place.
Foreign key processing can be deferred to commit time for better efficiency.
But if you batch up too many of those at once, you should make sure that
deferral doesn't itself cause an activity spike.
Directly profiling functions and other activities in the database, including
snooping into what the operating system is doing under the hood, can find
unexpected performance issues that no simpler analysis can locate.
PostgreSQL performance and features have increased so much in recent
versions that time spent trying to optimize an older version might be
better spent planning an upgrade.
Minor PostgreSQL releases focus on bug fixes, and can be effective at
removing performance issues caused by bugs too.

•

•

•

•

•

•

•

•

Index
Symbols
$PGDATA environment variable 106, 125
--enable-dtrace option 412
--enable-profiling option 411
-W 0 configuration 37
2warm 365

A
ACID 34
AFTER trigger 409
aggregate functions

about 252
AVG() 252
COUNT() 252
EVERY() 252
MAX() 252
MIN() 252
STDDEV() 252
SUM() 252
VARIANCE() 252

AMD
about 22, 44
features 44
versus Intel 43

ANALYZE command 134
append function 255, 256
archive_cleanup_command parameter 420
archive_command setting 140, 419
archive_mode setting 140, 419
archive_timeout setting 140
Areca 31
ATA 23
auto_explain module 134, 180
Automated Teller Machine (ATM) 192

automatic parallel restore 403
autovacuum_max_workers parameter 103
autovacuum daemon

about 134, 162
advancements 162
enabling, on older versions 135
limitations 167-170
logging 163
monitoring 163
per-table adjustments 165, 166
triggering 164, 165

B
B-tree

about 171, 225, 228
benefits 225
fillfactor parameter 224
text operator classes 226

backend setting 127
background writer process 114
background writer statistics

database parameters, tuning 322-324
bad results sources, pgbench test

PostgreSQL builds 204
worker threads 204, 205

battery-backed write cache. See BBWC
BBWC 35, 38
BEGIN/COMMIT block 399
benchmarking 17
bitmap heap

and index scans 247, 248
block_size parameter 103
blocks

creating, in database 108
dirty blocks, writing to disk 109

[428]

block statistics
indexing 210

bonnie++ 2.0 57
bonnie++ tool

about 56
example 56
zcav utility 58, 59

bottleneck 17
Btrfs, Linux filesystems 77
Bucardo

about 370
URL 370

buffer cache
contents, analyzing 118
queries, inspecting 118, 119

buffer cache inspection
used, for feedback sizing 123

buffer content summary
with percentages 120, 121

buffers_backend 114
buffers_checkpoint 114
buffers_clean 114
bulk data load, PostgreSQL

about 399
automatic parallel restore 403
constraints, adding 402
indexes, recreating 402
methods 399, 400
post load, cleaning up 403, 404
speeding up 401, 402
WAL acceleration, skipping 402

C
cache

clearing 237, 238
Cacti

about 349
and PostgreSQL 350
and Windows 350

CAV 48
CentOS Linux systems 14
check_postgres utility 175
checkpoint

about 110
parameters 136, 138
timings 111

checkpoint, parameters
checkpoint_completion_target 138
checkpoint_segments 137
checkpoint_timeout 138

checkpoint_completion_target 112
checkpoint_completion_target parameter

138
checkpoint_segments parameter 137
checkpoint_segments setting 128, 401
checkpoint_timeout parameter 112, 138
CHECKPOINT command 111
checkpoint overhead 116
checkpoint spikes 112
checkpoint timing 111
clock-sweep algorithm 115
CLUSTER command 220, 224
clustering

about 224
benefits 224

column target
adjusting 275, 276

commit_delay parameter 144
commit_siblings parameter 144
commit rate

about 49
Insert rate 50
test_fsync program 50
Windows platform 50

common partitioning mistakes 390
Common Table Expressions. See CTE scan
Completely Fair Scheduler (CFS) 205
complicated disk benchmark programs

fio 62
iozone 62
pgiosim 62

concurrent index
creating 223, 224

configuration, PostgreSQL 9.0 422, 423
configuration file

reloading 127, 128
connection pooling

about 355
connection counts, pooling 356, 357
pgBouncer 358
pgpool-II 357

Constant Angular Velocity. See CAV
constraint_exclusion parameter 143, 279

[429]

constraints
adding 402

context field, settings
backend 127
internal 126
postmaster 126
sighup 127
superuser 127
user 127

contrib modules
about 13
installing, from source 14
locating, on your system 13
using 15

contrib modules, installing
from source 14

COPY command 22, 399
cpu_index_tuple_cost parameter 241
cpu_operator_cost parameter 241
cpu_tuple_cost parameter 241
CPU benchmarking

about 41, 44
example 44, 45

CPUs 21, 22
CSV logging

using 178, 179
CTE scan 261
cumulatives

windows functions, using 293, 294
cumulative views

and live views 299
current_setting() function 100
cursor_tuple_fraction parameter 279

D
database

default values 126
disk usage 315-317
example 236
external drive, using 26
new block, creating 108
pg_buffercache module, installing 105
profiling 411, 412
reset values 126
rows, counting 404, 405

database, profiling
about 411
DTrace 412
gprof 411
OProfile 411
Visual Studio 411

database block
dirty block, writing ways 114
lifecycle 113

database buffer cache
versus operating system cache 114, 115

database caching
about 359
inspecting 104
memcached 360
pgmemcache 360, 361

Database Connection Pool (DBCP) 359
database connections

parameters 129, 130
database connections, parameters

listen_addresses 129, 130
max_connections 130, 131

database development, PostgreSQL 9.0 421,
422

database disk layout 106, 107
database parameters

tuning, background writer statistics used
322-324

database server
configuring, for pgbench 193

Database Test (dbt) project 207
Data Definition Language (DDL) 133
data partitioning, PostgreSQL

horizontal partitioning, with PL/Proxy 391
table range partitioning 375

dbt-2 207
dbt-5 208
DDR2 43
DDR3 43
DDR RAM 43
dd utility

about 55
example 55
working 55

deadlock
about 314
sequence 314

[430]

deadlock_timeout parameter 315
Debian 14
dedicated server

guidelines 145, 146
default_statistics_target parameter 136
DELETE statement

about 154
example 154

Dell Store 2 database
about 234
example 235
installing 234

direct-attached storage (DAS) 32
Direct Memory Access (DMA) 29
disk benchmarking tools

about 50
bonnie++ 56
dd 55
hdtune 51
sysbench 60

disk controller
about 29
eliminating, reasons 29
monitoring 36
NAS 32
recommendations 30, 31
SAN 32

disk controller write cache 35
disk drive write cache 36
disk layout, PostgreSQL

about 91
database directory tree 92
guidelines 96
symbolic links 91
tablespaces 91, 92

diskperf command 344
disk performance

expectations 65
disks

about 23
dirty blocks, writing 109
drive error handling 26
hard drives, reliability status 27
RAID 24
SAS disks 23
SATA disks 24
Solid State Drives (SSD) 28

double buffering 115
Double data rate synchronous dynamic ran-

dom access memory. See DDR RAM
doubly cached data 115
drive firmware

and RAID 27, 28
drive support, write barriers 78
drive write caches

disabling 37
drop_caches feature 238
DTrace

about 412
implementing, on FreeBSD 412
Linux SystemTap emulation 412, 413

dynamic trigger functions 380, 381

E
effective_cache_size parameter

about 141, 277
working 277, 278

empty partition query plans 382
Enterprise Postgres Query Analyze. See

EPQA
EPQA

about 186
URL 186

EXCEPT construct 282
EXPLAIN ANALYZE statement 236
EXPLAIN statement

about 236
cache behavior 237
timing overhead 236

expression-based indexes
example 229

ext2, Linux filesystems 72
ext3, Linux filesystems

about 73
journaling levels 73

ext4, Linux filesystems 75
Extensible Firmware Interface (EFI)

standard 70
external drive

using, for database 26
external SATA (eSATA) 26
Extreme Memory Profile protocol. See XMP

protocol

[431]

F
Fake RAID cards 31
FAT32 89
filesystem crash recovery 70
filesystem metadata 70
filesystems

journaling 71
filesystem sizes

about 69
issues 69

filesystem support, write barriers 79
fillfactor parameter 224, 225
fio

URL 62
flash disks. See Solid State Drives (SSD)
Force Unit Access (FUA) 78
FreeBSD

DTrace, implementing 412
FreeBSD UFS2 86
Free space map. See FSM
FSM

exhausting 169, 170
settings 131

fsync commit rate 61
fsync parameter 143, 401
full-text search (FTS) package 230
full_page_writes parameter 144
full sequential scan 214

G
Generalized Inverted Index. See GIN
Generalized Search Tree. See GiST
genetic query optimizer. See GEQO
GEQO

about 270, 421
working 270

getconf command 101
GIN

about 227
benefits 227

GiST
about 227
benefits 227

gnuplot software 58

Golconde
about 372
URL 372

gprof
about 411
issues 411

graphing
kSar, used 343

GridSQL scaling 395
GUID Partition Table (GPT) scheme 70

H
hardware RAID

about 29
advantages 29, 30
disadvantages 30

HashAggregate function 252, 253
hash generation, horizontal Partitioning

with PL/Proxy 392, 393
hash index 226
hash joins

about 266
anti joins 267
example 266
GEQO 270
join, removing 269
join order, forcing 268
join ordering 268
semi join 267

hdtune tool
about 51
IOPS 53, 54
storking tests 52, 53
URL 51

Heap-Only Tuples (HOT)
about 160, 416
working 160

horizontal Partitioning with PL/Proxy
about 391
hash generation 392, 393
scaling with GridSQL 395
scaling with PL/Proxy 393

Hot Standby, PostgreSQL
about 363
Streaming Replication 366
terminology 364

[432]

tuning 366, 367
WAL shipping, setting up 365

htop program 340
Hyperic HQ 352

I
I/O scheduler elevator

about 82
elevator=as 83
elevator=cfq 83
elevator=deadline 83
elevator=noop 83

I/Os Per Second. See IOPS
IDE 23
IDE drives 78
in-place upgrading 10
index

about 209
benefits 209
clustering 224
combining 217
concurrent index, creating 223, 224
creating 215, 222
full sequential scan 214
recreating 402
reindexing 225
unique indexes 222, 223
working 211, 212

index, benefits
about 228
expression-based indexes 229
full-text search (FTS) package 230
multicolumn indexes 228
partial indexes 229
sorting 228

index, types
B-tree 225, 226
GIN 227
GiST 227
hash 226

index bloat
about 171
measuring 172, 173

index I/O 305
index scan

about 213, 247

and bitmap heaps 247, 248
index statistics

about 303
index I/O 305

information
estimating, with statistics 271-275
viewing, with statistics 271-275

initdb command 100
IN lists

and subquery conversions 258
INSERT command 399
INSERT rate 50
installation, contrib modules 14
Intel

versus AMD 43
internals, PostgreSQL 9.0 423, 424
internal setting 126
IOPS

about 47
and random access 47, 48
resources, URL 48
working 47

iostat tool
%iowait 332
about 329
example 330
overloaded system samples 335-338
performance, example 332-334

iotop program 331
iozone

URL 62

J
JFS, Linux filesystems 77
joins

about 262
hash joins 266
merge join 264
nested loop 262

journaling levels, ext3 Linux filesystems
about 73
data=journal 73
data=ordered 73
data=writeback 73

Just a Bunch of Disks (JBOD) 38

[433]

K
kernel semaphores 102
kill command 128
kSar

graphing with 343

L
latency analysis 200, 201, 202
Least Recently Used blocks. See LRU blocks
LIKE operator 136
limit nodes

offsets, adding 251
limit query

about 250
example 251

Linux
htop program 340
iotop program 331

Linux filesystems
about 72
Btrfs 77
ext2 72
ext3 73
ext4 75
JFS 77
ReiserFS 77
tuning 79
write barriers 77
XFS 75

Linux filesystem tuning
about 79
cache sizing, writing 81
caching 81
file access times 80
I/O scheduler elevator 82, 84
read-ahead 79, 80
swapping 81

listen_addresses parameter 129, 130
live configuration

interacting, with 125
live views

and cumulative views 299
lock information

decoding 309-311
logging 314

locks
about 307
lock information, decoding 309-311
table lock waits 313
transaction lock waits 312, 313
virtual transactions 307, 309
working 307

log_checkpoints parameter 111, 112
log_destination parameter 132, 175
log_directory parameter 132, 175
log_filename parameter 132, 175
log_line_prefix option 423
log_line_prefix parameter 132, 175, 176, 177
log_min_duration_statement parameter 133
log_statement parameter 133
log_statement parameter, options

all 133
ddl 133
mod 133
none 133

log_temp_files parameter 423
log files, analyzing

EPQA 186
mk-query-digest 186
pg_stat_statements 182, 183
pgFouine 183-185
pgsi 186
PQA 186

logging
parameters 132

logging, parameters
log_line_prefix 132
log_min_duration_statement 133
log_statement 133

logging_collector parameter 175
log messages

syslog, using 177, 178
Londiste 369
LRU blocks 114
LSI MegaRAID card 30

M
maintainance_work_mem parameter 135
maintenance_work_mem value 401
Mammoth Replicator 371

[434]

max_connections parameter 103, 130, 131
max_fsm_pages setting 132
max_fsm_relations setting 132
max_locks_per_transaction parameter 103
max_prepared_transactions parameter 103,

144
memory 22, 23
memory benchmarking

about 41
memtest86+ tool 42
STREAM memory testing 42, 43

memtest86+ tool
about 42
downloading, URL 42
limitation 42
working 42

Merge Joins
about 264
and nested loop 265, 266
example 265

mirroring. See RAID 1
mk-query-digest tool

about 186
URL 186

monitoring softwares 346
MRTG 347
multicolumn indexes 228
Multi Router Traffic Grapher. See MRTG
Multiversion Concurrency Control. See

MVCC
Munin

about 350
features 350

MVCC
about 149, 307
advantages 155
behavior 152
disadvantages 156
documentation, URL 149
modes 154
transaction visibility 149

N
n_distinct_inherited parameter 276
Nagios

about 173, 347

and PostgreSQL 348, 349
and Windows 349
limitations 348
working 348

NAS 32
nested joins

about 262
example 262
with, inner index scan 263, 264

nested loops
and merge join materialization 265, 266

Network Attached Storage. See NAS
nodes, processing

about 249
aggregate functions 252
append 255, 256
CTE Scan 261
group 257
HashAggregate 252, 253
limit 250
materialize 260
result 254
set operations 259, 260
sort 249
subplan 258
subquery scan 258
unique 253

NTFS
about 89
mounting behaviour, adjusting 90

numbering
rows, in SQL 291, 292
windows functions, using 292

O
object identifier. See OID
OID 107, 121
OmniPITR 365
OmniTI 352
Online Transaction Processing (OLTP) 8,

207
operating system cache

inspecting 116
versus database buffer cache 114, 115

operating system write cache 35
OProfile 411

[435]

optimizer bugs 287
optimizer features

disabling 282-286
ORDER BY clause 209

P
Pagila database 234
parity 24
partial indexes 229
partitioned queries 386-388
partitioning, advantages 390
partition rules 381
partitions

creating 378, 389
dynamic creation 389
scheduled creation 389
sizing 377

pdflush 81
per-client, settings

constraint_exclusion 143
effective_cache_size 141
random_page_cost 143
synchronous_commit 141, 142
work_mem 142

performance issues, PostgreSQL
high foreign key overhead 408, 409
materialized views 410
PL/pgSQL benchmarking 407
prepared statement execution 406, 407
rows, counting 404, 405
statistics collector, overhead 409, 410
triggers 409
unexplained writes 405, 406

pg_buffercache module
about 104, 119
installing, into database 105
requisites 119
using 119

pg_bulkload loader 400
pg_clog directory 115
pg_ctl command 132
pg_dumpall program 9
pg_dump program 9, 22
pg_freespacemap module 175
pg_indexes_size() function 423

pg_last_xlog_receive_location() function
419

pg_last_xlog_replay_location() function 419
pg_migrator program 10
pg_relation_size() function 121
pg_restore program 9
pg_stat_activity 306
pg_stat_bgwriter

snapshots, saving 319-322
pg_stat_reset_single_function_counters()

function 422
pg_stat_reset_single_table_counters()

function 422
pg_stat_statements feature 182, 183
pg_stat_user_tables statistics 113, 210
pg_statio_user_tables statistics 210
pg_table_size() function 121, 423
pg_total_relation_size() function 121
pgAdmin III tool 242
pgbench-tools

configuring 196, 197
results, graphing 195, 196

pgbench custom tests
about 205
speed test, inserting 206, 207

pgbench program
limitations 204, 205

pgbench test 325
about 189
bad results, sources 203-205
database server, configuring 193
query script definition 191-193
running, manually 194
sample server configuration 193
scale detection 190, 191
table definition 189, 190

pgbench test results
about 197
latency analysis 200-202
SELECT-only test 197, 198
TPC-B-like test 198, 199

pgBouncer
about 358
application server pooling 359

PgCluster
about 371
URL 371

[436]

pgFouine
about 183
features 186
limitations 186
URL 183
working 184

pgFoundry
about 15
URL 15

pgiosim
URL 62

pgpool-II
about 357
features 357
limitations 357
load balancing, for replication scaling 357,

358
URL 370
working 370

pgsi
about 186
URL 186

pgstat_bgwriter.buffers_alloc statistics 113
pgstat_bgwriter parameter 112
pgstatspack package 351
pgstattuple module 174
pgtune

about 147
URL 147

PITR
about 140
tools 365

PL/pgSQL benchmarking 407
PL/Proxy

about 391
premise 391

PL/Proxy scaling
about 393
sharding 394

plan analysis tools 244
Postgres-X

about 371
URL 371

PostgreSQL
about 7
activities 306, 307
and Cacti 350

and Nagios 348, 349
background writer 318, 319
buffer 318, 319
bulk loading 399
checkpoint activity 318, 319
connection pooling 355
connections 306, 307
CPU benchmarking 41, 44
cumulative views 299
database, phases 330
database caching 359
data partitioning 375
disk arrays 94, 95
disk benchmarking tools 50
disk layout 91, 94, 95
EXPLAIN statement 236
frequently asked questions, URL 399
Hot Standby 363
index statistics 303, 304
joins 262
live views 299
memory benchmarking 41
minor versions, upgrading 11
monitoring softwares 346
performance improvements 8, 9
performance issues 404-410
pgbench test 189
physical disk performance 47
platform 117, 118
platforms, supporting 14
query optimization 233
query plan node structure 239
raid 94, 95
read committed mode 153
related softwares 16
sample dataset 233
sample disk results 63
statistics 271
statistics collector 297
statistics views 297, 298
table statistics 300, 301
tools 12, 13
trending softwares 346
UNIX monitoring tools 325
upgrading, to major version 9, 10
upgrading, to PostgreSQL 8.3+ 10, 11
VACUUM command 158

[437]

version 117, 118
version, selecting for deployment 9
versions, upgrading 413, 414
Windows monitoring tools 343
workload, limitations 117, 118

postgresql.conf file
about 125
memory units 99, 100

postgresql.conf setting 35
postgresql.conf values

autovacuum 401
checkpoint_segments 401
fsync 401
maintenance_work_mem 401
synchronous_commit 401
vacuum_freeze_min_age 401
Wal_buffers 401

PostgreSQL 8.1
performance features 415

PostgreSQL 8.2
performance features 415

PostgreSQL 8.3
customizing, for 197
performance features 416, 417

PostgreSQL 8.4
performance features 417-419

PostgreSQL 9.0
about 419
configuration 422, 423
database development 421, 422
EXPLAIN statement 420, 421
internals 423, 424
monitoring 422, 423
queries 420, 421
replication 419, 420
tools 423

PostgreSQL application
database servers 16

PostgreSQL database structure
about 92
base 92
global 92
pg_clog 92
pg_multixact 92
pg_stat_tmp 92
pg_subtrans 92
pg_tblspc 92

pg_twophase 92
pg_xlog 92
temporary files 93

PostgreSQL server
memory units, in postgresql.conf file 99,

100
shared memory allocation, estimating 102,

103
PostgreSQL System Impact. See pgsi
PostgreSQL tools

about 12
contib modules 13
pgFoundry 15

postmaster setting 126
PowerEdge RAID Controller (PERC) 30
PowerVault 32
PQA

about 186
URL 186

Practical Query Analysis. See PQA
profiling 17
prstat tool 340
psql utility 166

Q
queries

fully cached dataset, optimizing 281
improving 280
optimizer bugs, working around 287
optimizer features, disabling 282, 284, 286
plan restructuring, avoiding 287-290
query equivalence, testing 281, 282

queries, PostgreSQL 9.0 420, 421
query disk

measuring 210
query equivalence

testing 281, 282
query log

monitoring 175
query log, monitoring

about 175
PostgreSQL log setup 175, 176

query optimizer
working 240

query plan 236

[438]

query planning parameters
constraint_exclusion 279
cursor_tuple_fraction 279
effective_cache_size 277, 278
work_mem 278, 279

query plan node structure
about 239
basic cost computation 240
estimated costs 242

query script definition, pgbench test 191-
193

R
RAID

and drive firmware 27, 28
RAID 0 24
RAID 1 24
RAID 10 25
RAID 5 25
RAID 6 25
RAID array

RAID 0 24
RAID 1 24
RAID 10 25
RAID 5 25
RAID 6 25

RAID controllers 37
random_page_cost parameter 143, 219, 240,

241
random access

and IOPS 47, 48
read committed mode 153
Reconnoiter 352
Redundant Array of Inexpensive Disks. See

RAID
REINDEX command 225
ReiserFS, Linux filesystems 77
replication, PostgreSQL 9.0 419, 420
replication projects

Golconde 372
Mammoth Replicator 371
PgCluster 371
Postgres-XC 371
Rubyrep 371

replication queue managers
about 367, 368
Londiste 369
scaling with replication queue software 369
Slony 368

RESET command 126
results

graphing, with pgbench-tools 195, 196
RHEL 14
Round Robin Database tool. See RRDtool
row_number() function 292
row lock conflicts

about 152
example 153
serialization 154

rows
counting 404, 405
numbering, in SQL 291, 292

row sets
assembling 245

row sets, assembling
about 245
index scan 247
sequential scan 246
tuple id 245

RRDtool 347
Rubyrep

about 371
URL 371

S
Sakila 234
sample dataset, PostgreSQL

Dell Store 2 234
Pagila 234

SAN
about 32
advantages, over direct storage 32, 33
drawbacks 33

sar tool
about 340, 343
example 341, 342

SAS disks
about 23
parameters 23

[439]

SATA disks
about 23
parameters 24

SATA drives 78
scale detection, pgbench test 190, 191
SCSI/SAS drives 78
SELECT-only test 197, 198
SELECT statement 209
seq_page_cost parameter 240, 241
Seq Scan node 239
sequential access

and zcav utility 48
sequential scans 218, 246
Serial ATA disks. See SATA disks
Serial Attached SCSI disks. See SAS disks
serializable method 154
serialization 154
server-wide, settings

checkpoints 136
database connections 129
logging 132
PITR 140
shared memory 131
statistics 134
vacuuming 134
WAL, replication 140

SET command 140
set operations 259, 260
sharding 394
shared_buffers parameter 99, 131
shared memory, parameters

shared_buffers 131
shared server

guidelines 146
short stroking 49
SHOW command 100
sighup setting 127
SIGHUP signal 128
Simple Network Management Protocol. See

SNMP
Slony

about 368
URL 368

slow array performance
sources 65-67

slow disk
sources 65-67

slow memory
sources 45, 46

slow processors
sources 45, 46

SMART protocol 26
SNMP 347
SNMP tools 353
software RAID 29
Solaris

about 14
prstat tool 340

Solaris and FreeBSD filesystems 84
Solaris UFS 85
Solid State Drives (SSD)

about 28
avoiding, reasons 28

sorting 228
sort operations

about 249
example 249, 250

special application requirements
Bucardo 370
pgpool-II 370

spindle 47
SQL

limitations 291
rows, numbering 291, 292

SQL windowing function
WindowAgg 254

Staplr 353
statistics

about 271
column target, adjusting 275, 276
distinct values 276
information, estimating 271-275
information, viewing 271-275
targets 275

statistics collector 297
overhead 409, 410

statistics targets 275
statistics views

about 297
example 297, 298

Storage Array Network. See SAN
storking tests, hdtune tool 52, 53
stream-scaling script 43

[440]

Streaming Replication 366
STREAM program

about 42
capabilities 42
working 43

striped with parity. See RAID 5
striping. See RAID 0
subquery conversions

and IN lists 258
subquery scan

and subplan 258
superuser setting 127
swappiness 81
symbolic links, PostgreSQL disk layout 91
symlink 91
synchronous_commit setting 141, 142, 401
sysBench benchmarking software

URL 8
sysbench program

about 60
example 60
seek rate 61

Sysinternals tools 344
syslog

using, for log messages 177, 178
sysstat tool

about 340
enabling 342
example 341, 342

SystemTap 412, 413

T
table

disk usage 315-317
table definition, pgbench test 189, 190
table I/O 302
table range partitioning

about 375
advantages 390
common partitioning mistakes 390
date change update trigger 382
dynamic trigger functions 380, 381
empty partition query plans 382
INSERT statements, redirecting to

partitions 379, 380
key field, determining 376

list partitioning 377
live migration 383-385
new partitions, creating 389
partitioned queries 386-388
partition rules 381
partitions, creating 378
partitions, sizing 377

tablespaces, PostgreSQL disk layout 91, 92
table statistics

about 300
example 300, 301
table I/O 302

Task Manager
about 343
Sysinternals tools 344

terminology, Hot Standby
about 364
base backup 364
failover 364
file-based log shipping 364
point-in-time recovery 364
standby 364
write-ahead log 364

test_fsync program 50
timing overhead

example 236
tools, PostgreSQL 9.0 423
top tool

about 22, 338, 346
example 339

TPC-B
TPC-BURL 189

TPC-B-like test 198, 199
TPC-E 208
TPC-H 208
transaction ids 150, 156, 157, 307
Transaction Processing Performance

Council 207, 208
transaction visibility, MVCC

about 149
computation internals 149, 150
deletions 154
row lock conflicts 152, 153
transaction ID 156, 157
UPDATE statement 150, 152

trending softwares 346

[441]

tupleid
about 245
OID 246

txid_current() function 157
txid_current_snapshot() function 150

U
Ubuntu 14
unique indexes 222, 223
UNIX

kernel semaphores 102
shared memory parameters 100, 101

UNIX monitoring tools
about 325
iostat 329, 330
sar 340, 341, 342
sysstat 340, 341, 342
top 338, 339
vmstat 326

UPDATE statement
about 150
example 151
steps 152

usagecount mechanism 119, 120

V
vacuum_freeze_min_age parameter 401, 404
VACUUM command 134

about 158
implementing 158
limitations 167
need for 158

VACUUM FULL command
about 159
drawbacks 159
working 159

vacuuming
about 158
cost estimation process 160, 161
free disk space, returning 159
regular vacuum 158

verbose output 243

version, PostgreSQL
peak read-only TPS 8
peak write-only TPS 8
selecting, for deployment 9
upgrading 9, 10

virtual transactions 307, 309
Visual Studio 411
vmstat tool

about 326, 346
example 327, 328
parameters 327, 328

vmstat tool, parameters
b 327
bi 328
bo 328
buff 327
cache 327
cs 328
free 327
id 328
in 328
r 327
si 327
so 327
st 328
swpd 327
sy 328
us 328
wa 328

W
WAL

about 34, 110
documentation, URL 34
recovery processing 111

wal_block_size parameter 103
wal_buffers parameter 103, 401
wal_buffers setting 138
wal_buffers value 100
wal_level setting 419
wal_sync_method 139
wal_writer_delay parameter 141
WAL acceleration

skipping 402

[442]

walmgr 365
WAL replication 140
WAL shipping

setting up 365
WHERE clause 153
WindowAgg function 254
Windows

and Cacti 350
and Nagios 349

Windows commit rate 50
Windows filesystems

about 89
FAT32 89
NTFS 89

windows functions
used, for cumulatives 293, 294
used, for numbering 292

Windows monitoring tools
about 343
task manager 343
Windows System Monitor 344

Windows System Monitor
about 344
data, saving 345

work_mem parameter 142
about 278
working 278, 279

work_mem setting 99
Write-Ahead Log. See WAL

write-back cache
about 34
precautions 36
sources 35, 36

write-through cache
about 34
performance impact 38

write barriers
about 77
drive support 78
filesystem support 79

X
XFS, Linux filesystems 75, 76
XIDs. See transaction ids
XMP protocol 46

Z
zcav utility

about 58
and sequential access 48
example 59

Zenoss 351
ZFS

about 87
features 89

Thank you for buying
PostgreSQL 9.0 High Performance

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PostgreSQL 9 Administration
Cookbook
ISBN: 978-1-84951-028-8 Paperback: 366 pages

A practical guide, this cookbook will ensure you run
a smooth PostgreSQL database

1. Administer and maintain a healthy database

2. Monitor your database ensuring that it
performs as quickly as possible

3. Tips for backup and recovery of your database

Learning Nagios 3.0
ISBN: 978-1-847195-18-0 Paperback: 316 pages

A comprehensive configuration guide to monitor and
maintain your network and systems

1. Secure and monitor your network system with
open-source Nagios version 3

2. Set up, configure, and manage the latest version
of Nagios

3. In-depth coverage for both beginners and
advanced users

Please check www.PacktPub.com for information on our titles

Cacti 0.8 Network Monitoring
ISBN: 978-1-847195-96-8 Paperback: 132 pages

Monitor your network with ease!

1. Install and setup Cacti to monitor your network
and assign permissions to this setup in no time
at all

2. Create, edit, test, and host a graph template to
customize your output graph

3. Create new data input methods, SNMP, and
Script XML data query

ASP.NET Site Performance
Secrets
ISBN: 978-1-84969-068-3 Paperback: 483 pages

Simple and proven techniques to quickly speed up
your ASP.NET website

1. Speed up your ASP.NET website by identifying
performance bottlenecks that hold back your
site’s performance and fixing them

2. Tips and tricks for writing faster code and
pinpointing those areas in the code that matter
most, thus saving time and energy

3. Drastically reduce page load times

4. Configure and improve compression – the
single most important way to improve your
site’s performance

Please check www.PacktPub.com for information on our titles

High Availability MySQL
Cookbook
ISBN: 978-1-847199-94-2 Paperback: 264 pages

Over 60 simple but incredibly effective recipes
focusing on different methods of achieving high
availability for MySQL database

1. Analyze and learn different high availability
options, including clustering and replication
solutions within MySQL

2. Improve uptime of your MySQL databases
with simple recipes showing powerful high
availability techniques for MySQL

3. Tune your MySQL database for optimal
performance.

MySQL for Python
ISBN: 978-1-849510-18-9 Paperback: 440 pages

Integrate the flexibility of Python and the power of
MySQL to boost the productivity of your Python
applications

1. Implement the outstanding features of Python’s
MySQL library to their full potential

2. See how to make MySQL take the processing
burden from your programs

4. Learn how to employ Python with MySQL to
power your websites and desktop applications

5. Apply your knowledge of MySQL and Python
to real-world problems instead of hypothetical
scenarios

Please check www.PacktPub.com for information on our titles

MySQL 5.1 Plugin Development
ISBN: 978-1-849510-60-8 Paperback: 288 pages

Extend MySQL to suit your needs with this unique
guide into the world of MySQL plugins

1. A practical guide with working examples
explained line by line

2. Add new functions to MySQL with User
Defined Functions

3. Export information via SQL using the
INFORMATION_SCHEMA plugins

4. Search within PDFs, MP3s, and images; offset
user typing errors with fulltext parser plugins

5. Access your custom data formats with a storage
engine plugin

Mastering phpMyAdmin 3.3.x for
Effective MySQL Management
ISBN: 978-1-84951-354-8 Paperback: 412 pages

A complete guide to get started with phpMyAdmin
3.3 and master its features

1. The best introduction to phpMyAdmin
available

2. Written by the project leader of phpMyAdmin,
and improved over several editions

3. A step-by-step tutorial for manipulating data
with phpMyAdmin

4. Learn to do things with your MySQL database
and phpMyAdmin that you didn’t know were
possible!

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: PostgreSQL Versions
	Performance of historical PostgreSQL releases
	Choosing a version to deploy
	Upgrading to a newer major version
	Upgrades to PostgreSQL 8.3+ from earlier ones
	Minor version upgrades

	PostgreSQL or another database?
	PostgreSQL tools
	PostgreSQL contrib
	Finding contrib modules on your system
	Installing a contrib module from source
	Using a contrib module

	pgFoundry
	Additional PostgreSQL-related software

	PostgreSQL application scaling lifecycle
	Performance tuning as a practice
	Summary

	Chapter 2: Database Hardware
	Balancing hardware spending
	CPUs
	Memory
	Disks
	RAID
	Drive error handling
	Hard drive reliability studies
	Drive firmware and RAID
	SSDs

	Disk controllers
	Hardware and Software RAID
	Recommended disk controllers
	Attached storage – SAN and NAS

	Reliable controller and disk setup
	Write-back caches
	Sources of write-back caching
	Disk controller monitoring
	Disabling drive write caches

	Performance impact of write-through caching

	Summary

	Chapter 3: Database Hardware Benchmarking
	CPU and memory benchmarking
	memtest86+
	STREAM memory testing
	STREAM and Intel vs. AMD

	CPU benchmarking
	Sources of slow memory and processors

	Physical disk performance
	Random access and I/Os Per Second
	Sequential access and ZCAV
	Short stroking

	Commit rate
	PostgreSQL test_fsync
	INSERT rate
	Windows commit rate

	Disk benchmarking tools
	hdtune
	Short stroking tests
	IOPS
	Unpredictable performance and Windows

	dd
	bonnie++
	bonnie++ 2.0
	bonnie++ ZCAV

	sysbench
	Seek rate
	fsync commit rate

	Complicated disk benchmarks

	Sample disk results
	Disk performance expectations
	Sources of slow disk and array performance

	Summary

	Chapter 4: Disk Setup
	Maximum filesystem sizes
	Filesystem crash recovery
	Journaling filesystems

	Linux filesystems
	ext2
	ext3
	ext4
	XFS
	Other Linux filesystems
	Write barriers
	Drive support for barriers
	Filesystem support for barriers

	General Linux filesystem tuning
	Read-ahead
	File access times
	Read caching and swapping
	Write cache sizing
	I/O scheduler elevator

	Solaris and FreeBSD filesystems
	Solaris UFS
	FreeBSD UFS2
	ZFS

	Windows filesystems
	FAT32
	NTFS
	Adjusting mounting behaviour

	Disk layout for PostgreSQL
	Symbolic links
	Tablespaces
	Database directory tree
	Temporary files

	Disk arrays, RAID, and disk layout
	Disk layout guidelines

	Summary

	Chapter 5: Memory for Database Caching
	Memory units in the postgresql.conf
	Increasing UNIX shared memory parameters for larger buffer sizes
	Kernel semaphores
	Estimating shared memory allocation

	Inspecting the database cache
	Installing pg_buffercache into a database
	Database disk layout
	Creating a new block in a database
	Writing dirty blocks to disk

	Crash recovery and the buffer cache
	Checkpoint processing basics
	Write-ahead log and recovery processing
	Checkpoint timing
	Checkpoint spikes
	Spread checkpoints

	Database block lifecycle
	Dirty block write paths

	Database buffer cache versus operating system cache
	Doubly cached data
	Inspecting the OS cache

	Checkpoint overhead
	Starting size guidelines
	Platform, version, and workload limitations

	Analyzing buffer cache contents
	Inspection of the buffer cache queries
	Top relations in the cache
	Summary by usage count
	Buffer contents summary, with percentages
	Buffer usage count distribution

	Using buffer cache inspection for sizing feedback

	Summary

	Chapter 6: Server Configuration Tuning
	Interacting with the live configuration
	Defaults and reset values
	Allowed change context
	Reloading the configuration file
	Commented out settings

	Server-wide settings
	Database connections
	listen_addresses
	max_connections

	Shared memory
	shared_buffers
	Free space map (FSM) settings

	Logging
	log_line_prefix
	log_statement
	log_min_duration_statement

	Vacuuming and statistics
	autovacuum
	Enabling autovacuum on older versions
	maintainance_work_mem
	default_statistics_target

	Checkpoints
	checkpoint_segments
	checkpoint_timeout
	checkpoint_completion_target

	WAL settings
	wal_buffers
	wal_sync_method

	PITR and WAL Replication

	Per-client settings
	effective_cache_size
	synchronous_commit
	work_mem
	random_page_cost
	constraint_exclusion

	Tunables to avoid
	fsync
	full_page_writes
	commit_delay and commit_siblings
	max_prepared_transactions
	Query enable parameters

	New server tuning
	Dedicated server guidelines
	Shared server guidelines
	pgtune
	Summary

	Chapter 7: Routine Maintenance
	Transaction visibility with multiversion concurrency control
	Visibility computation internals
	Updates
	Row lock conflicts
	Serialization

	Deletions
	Advantages of MVCC
	Disadvantages of MVCC
	Transaction ID wraparound

	Vacuum
	Vacuum Implementation
	Regular vacuum
	Returning free disk space
	Full vacuum
	HOT

	Cost-based vacuuming
	autovacuum
	Autovacuum logging
	Autovacuum monitoring
	Autovacuum triggering
	Per-table adjustments

	Common vacuum and autovacuum problems
	Autovacuum is running even though it was turned off
	Autovacuum is constantly running
	Out of memory errors
	Not keeping up on a busy server
	Autovacuum is too disruptive
	Long running transactions
	Free Space Map exhaustion
	Recovering from major problems

	Autoanalyze
	Index bloat
	Measuring index bloat

	Detailed data and index page monitoring
	Monitoring query logs
	Basic PostgreSQL log setup
	Log collection
	log_line_prefix
	Multi-line queries
	Using syslog for log messages
	CSV logging

	Logging difficult queries
	auto_explain

	Log file analysis
	Normalized query fingerprints
	pg_stat_statements
	pgFouine
	PQA
	EPQA
	pgsi
	mk-query-digest

	Summary

	Chapter 8: Database Benchmarking
	pgbench default tests
	Table definition
	Scale detection
	Query script definition
	Configuring the database server for pgbench
	Sample server configuration

	Running pgbench manually
	Graphing results with pgbench-tools
	Configuring pgbench-tools
	Customizing for 8.3

	Sample pgbench test results
	SELECT-only test
	TPC-B-like test
	Latency analysis

	Sources for bad results and variation
	Developer PostgreSQL builds
	Worker threads and pgbench program limitations

	pgbench custom tests
	Insert speed test

	Transaction Processing Performance Council benchmarks
	Summary

	Chapter 9: Database Indexing
	Indexing example walkthrough
	Measuring query disk and index block statistics
	Running the example
	Sample data setup
	Simple index lookups
	Full table scans
	Index creation
	Lookup with an inefficient index
	Combining indexes
	Switching from indexed to sequential scans
	Planning for plan changes

	Clustering against an index
	Explain with buffer counts

	Index creation and maintenance
	Unique indexes
	Concurrent index creation
	Clustering an index
	Fill factor

	Reindexing

	Index types
	B-tree
	Text operator classes

	Hash
	GIN
	GiST

	Advanced index use
	Multicolumn indexes
	Indexes for sorting
	Partial indexes
	Expression-based indexes
	Indexing for full-text search

	Summary

	Chapter 10: Query Optimization
	Sample data sets
	Pagila
	Dell Store 2

	EXPLAIN basics
	Timing overhead
	Hot and cold cache behavior
	Clearing the cache

	Query plan node structure
	Basic cost computation
	Estimated costs and real world costs

	Explain analysis tools
	Visual explain
	Verbose output
	Machine readable explain output
	Plan analysis tools

	Assembling row sets
	Tuple id
	Object id

	Sequential scan
	Index scan
	Bitmap heap and index scans

	Processing nodes
	Sort
	Limit
	Offsets

	Aggregate
	HashAggregate
	Unique
	WindowAgg

	Result
	Append
	Group
	Subquery Scan and Subplan
	Subquery conversion and IN lists

	Set operations
	Materialize
	CTE Scan

	Joins
	Nested loop
	Nested loop with inner Index Scan

	Merge Join
	Nested loop and Merge Join materialization

	Hash Joins
	Hash semi and anti joins
	Join ordering
	Forcing join order
	Join removal
	Genetic query optimizer

	Statistics
	Viewing and estimating with statistics
	Statistics targets
	Adjusting a column target
	Distinct values

	Difficult areas to estimate

	Other query planning parameters
	effective_cache_size
	work_mem
	constraint_exclusion
	cursor_tuple_fraction

	Executing other statement types
	Improving queries
	Optimizing for fully cached data sets
	Testing for query equivalence
	Disabling optimizer features
	Working around optimizer bugs
	Avoiding plan restructuring with OFFSET
	External trouble spots

	SQL Limitations
	Numbering rows in SQL
	Using Window functions for numbering
	Using Window functions for cumulatives

	Summary

	Chapter 11: Database Activity and Statistics
	Statistics views
	Cumulative and live views
	Table statistics
	Table I/O

	Index statistics
	Index I/O

	Database wide totals
	Connections and activity
	Locks
	Virtual transactions
	Decoding lock information
	Transaction lock waits
	Table lock waits
	Logging lock information
	Deadlocks

	Disk usage
	Buffer, background writer, and checkpoint activity
	Saving pg_stat_bgwriter snapshots
	Tuning using background writer statistics

	Summary

	Chapter 12: Monitoring and Trending
	UNIX monitoring tools
	Sample setup
	vmstat
	iostat
	iotop for Linux
	Examples of good performance
	Overloaded system samples

	top
	Solaris top replacements
	htop for Linux

	sysstat and sar
	Enabling sysstat and its optional features
	Graphing with kSar

	Windows monitoring tools
	Task Manager
	Sysinternals tools

	Windows System Monitor
	Saving Windows System Monitor data

	Trending software
	Types of monitoring and trending software
	Storing historical trend data

	Nagios
	Nagios and PostgreSQL
	Nagios and Windows

	Cacti
	Cacti and PostgreSQL
	Cacti and Windows

	Munin
	Other trending packages
	pgstatspack
	Zenoss
	Hyperic HQ
	Reconnoiter
	Staplr
	SNMP tools

	Summary

	Chapter 13: Pooling and Caching
	Connection pooling
	Pooling connection counts
	pgpool-II
	pgpool-II load balancing for replication scaling

	pgBouncer
	Application server pooling

	Database caching
	memcached
	pgmemcache

	Summary

	Chapter 14: Scaling with Replication
	Hot Standby
	Terminology
	Setting up WAL shipping
	Streaming Replication
	Tuning Hot Standby

	Replication queue managers
	Slony
	Londiste
	Read scaling with replication queue software

	Special application requirements
	Bucardo
	pgpool-II

	Other interesting replication projects
	Summary

	Chapter 15: Partitioning Data
	Table range partitioning
	Determining a key field to partition over
	Sizing the partitions
	List partitioning

	Creating the partitions
	Redirecting INSERT statements to the partitions
	Dynamic trigger functions
	Partition rules

	Empty partition query plans
	Date change update trigger
	Live migration of a partitioned table
	Partitioned queries
	Creating new partitions
	Scheduled creation
	Dynamic creation

	Partitioning advantages
	Common partitioning mistakes

	Horizontal partitioning with PL/Proxy
	Hash generation
	Scaling with PL/Proxy
	Sharding

	Scaling with GridSQL

	Summary

	Chapter 16: Avoiding Common Problems
	Bulk loading
	Loading methods
	External loading programs

	Tuning for bulk loads
	Skipping WAL acceleration
	Recreating indexes and adding constraints
	Parallel restore
	Post load cleanup

	Common performance issues
	Counting rows
	Unexplained writes
	Slow function and prepared statement execution
	PL/pgSQL benchmarking
	High foreign key overhead
	Trigger memory use
	Heavy statistics collector overhead
	Targeted statistics resets

	Materialized views

	Profiling the database
	gprof
	OProfile
	Visual Studio
	DTrace
	DTrace on FreeBSD
	Linux SystemTap emulation of DTrace

	Performance related features by version
	Aggressive PostgreSQL version upgrades
	8.1
	8.2
	8.3
	8.4
	9.0
	Replication
	Queries and EXPLAIN
	Database development
	Configuration and monitoring
	Tools
	Internals

	Summary

	Index

